Nowadays, our life needs more and more electricity, and our lives cannot be without electricity, which requires our power to develop more quickly. Power plants are undoubtedly the place where electricity is produced. And now most of the power plant or chemical energy can be converted into heat, and then through the heat to do power production. The boiler is the main part of the power plant. Boiler unit consists of boiler body equipment and auxiliary equipment. The main body of the boiler consists of 'pot' (soft drinks system) and 'furnace' (combustion system). Baotou thermal power plant is mainly burning gas. The gas and air are at a certain rate into the furnace burning. This can greatly reduce the pollution of the environment, but also the full use of fuel. The soda system is mainly carried out in the drum. The heat generated by the combustion system heats the water in the drum, producing steam and then pushing the steam turbine into mechanical energy and finally into electrical energy. This has a high demand for water level, water composition, and the temperature of the steam produced in the drum. The water level should have upper and lower bounds, keeping it within a certain range. Water level is too high, will affect the steam drum soda separation effect, so that the steam drum exports of saturated steam with water increased, causing damage to the turbine, will cause serious explosion. And the water level is too low, it will affect the natural circulation of the normal, serious will make the individual water pipe to form a free water, resulting in flow stagnation, resulting in local metal wall overheating and burst pipe. Water in the heating at the same time will form a lot of scale, if not the chemical treatment of water will be in the formation of scale in the drum, cleaning more difficult, so the damage to the drum. The pressure of the drum is also an important control variable, and pressure control is highly correlated with liquid level control. It is necessary to ensure the integrity of the equipment, but also to ensure safety, followed by ensuring that the process of normal operation of the drum water. This time, the design is mainly for the unit steam temperature control system design. Steam temperature is one of the important indicators of boiler operation quality. It is too high and too low will significantly affect the power plant safety and economy. If the temperature of the steam is low, it will cause the power plant to increase the heat consumption and increase the axial thrust of the turbine to cause the thrust bearing to overload, but also cause the steam turbine to increase the final steam humidity, thus reducing the efficiency of the turbine, aggravating the erosion of the blade. On the contrary, the steam temperature is too high will make the super-heater wall metal strength decreased, and even burn the high temperature of the super-heater, the steam pipe and steam turbine high-pressure part will be damaged, seriously affecting safety. The boiler temperature control system mainly includes the adjustment of the superheated steam and the reheat steam temperature. The superheated steam temperature is the highest temperature in the boiler soda system. The stability of the steam temperature is very important for the safe and economical operation of the unit. Therefore, in the boiler operation, must ensure that the steam temperature in the vicinity of the specified value, and the temperature of the super-heater tube wall does not exceed the allowable working temperature.
This paper examines the sustainability practices implemented by healthcare establishments, mainly Small and Medium enterprises (SMEs), We focus on identifying opportunities with challenges involved. This systematic literature analyses 47 studies that explore sustainability practices in the healthcare system globally. The finding from the studies reveals that healthcare organizations with SMEs adopt diverse measures like renewable energy, a reduction, and a response procurement in minimizing the impact on the environment and ensuring financial stability. The challenges SMEs face comprise limited financial resources, lack of expertise, with difficulties accessing information and support. Furthermore, we suggest opportunities for SMEs to enhance sustainability practices with partnerships with other organizations and investing in educating employees. Implementation of sustainability practices will improve the financial stability, and environmental impact, with the wellbeing of healthcare stakeholders. The empirical evidence, comparative studies with cross-disciplinary are needed in exploring the effectiveness of the different suitability practices, potential trade-offs, synergies between sustainability and other organizational goals, the effect of sustainability practice in the financial with non-financial performance on SMEs in healthcare establishment are positive, with cost-effectiveness, efficiencies operations, improving brand reputations and engaging the employee. Established factors like regulating frameworks and government initiatives play a major role in the influence of adopting sustainability practices with cultural factors.
The purpose of this study is to determine the relationship between the exogenous variables (administrative support, career placement & employability, academic staff support, institutional factors, and information systems) as service delivery quality dimensions with satisfaction and moderating variable (academic and social integration) between endogenous variables (satisfaction and retention) among undergraduate students from Malaysian private higher education institutions. In order to accomplish the objectives proposed with hypotheses, a model reflecting the relationship between service delivery quality dimensions and satisfaction moderated by academic and social integration towards retention is applied. This empirical study focused on probability-stratified random sampling with a final sample size of 309 students. This study achieved statistically significant positive results by emphasizing academic and social integration as a moderating variable to achieve student retention by linking Perceived Performance Theory and Tinto’s Interactionist Theory from satisfaction to retention. Evaluation of the structural model on the coefficient of determination for the model’s predictive accuracy in this study produced an R2 = 0.85 for satisfaction, suggesting nearly 85% of the variance in endogenous latent construct satisfaction is explained by all the service delivery quality dimensions linked to it. As for retention produced R2 = 0.74, suggesting nearly 74% of the variance in endogenous latent construct retention is explained by all the service delivery quality dimensions linked together with satisfaction and academic and social integration as moderator. The model has a substantial effect with 0.76 in the Goodness-of-Fit index, indicating that the model has better explaining power.
Proper understanding of LULC changes is considered an indispensable element for modeling. It is also central for planning and management activities as well as understanding the earth as a system. This study examined LULC changes in the region of the proposed Pwalugu hydropower project using remote sensing (RS) and geographic information systems (GIS) techniques. Data from the United States Geological Survey's Landsat satellite, specifically the Landsat Thematic Mapper (TM), the Enhanced Thematic Mapper (ETM), and the Operational Land Imager (OLI), were used. The Landsat 5 thematic mapper (TM) sensor data was processed for the year 1990; the Landsat 7 SLC data was processed for the year 2000; and the 2020 data was collected from Operation Land Image (OLI). Landsat images were extracted based on the years 1990, 2000, and 2020, which were used to develop three land cover maps. The region of the proposed Pwalugu hydropower project was divided into the following five primary LULC classes: settlements and barren lands; croplands; water bodies; grassland; and other areas. Within the three periods (1990–2000, 2000–2020, and 1990–2020), grassland has increased from 9%, 20%, and 40%, respectively. On the other hand, the change in the remaining four (4) classes varied. The findings suggest that population growth, changes in climate, and deforestation during this thirty-year period have been responsible for the variations in the LULC classes. The variations in the LULC changes could have a significant influence on the hydrological processes in the form of evapotranspiration, interception, and infiltration. This study will therefore assist in establishing patterns and will enable Ghana's resource managers to forecast realistic change scenarios that would be helpful for the management of the proposed Pwalugu hydropower project.
Climate change is a pressing global challenge that requires immediate action. To address this issue effectively, it is essential to engage and empower the younger generation who will shape the future. This abstract presents the experience of Mohamed Bin Zayed University for Humanities (MBZUH) in UAE in promoting climate action through youth empowerment and environmental education.MBZUH has recognized the significance of incorporating environmental education into its curriculum to foster a generation of environmentally conscious individuals. Through a multidimensional approach, the university has developed innovative strategies to empower students, enabling them to become active participants in addressing climate change. These strategies encompass both formal and informal education, leveraging various platforms and partnerships to create a comprehensive learning environment.This study delves into the initiatives undertaken by MBZUH to empower youth in climate action. It explores the incorporation of environmental education across disciplines, integrating sustainability principles into existing courses, and offering specialized programs focused on environmental science and climate studies. Additionally, it highlights the university's efforts in promoting hands-on learning experiences, such as field trips, research projects, and community engagement, to deepen students' understanding of climate issues and inspire practical action.Furthermore, the study examines the role of MBZUH's collaboration with local and international organizations, governmental bodies, and the wider community in fostering youth empowerment and climate action. It showcases successful partnerships that have resulted in impactful initiatives, including awareness campaigns, capacity-building workshops, and youth-led environmental projects.By sharing the experience of MBZUH, this study aims to provide valuable insights and best practices for promoting climate action through youth empowerment and environmental education. It underscores the importance of empowering the next generation with the knowledge, skills, and motivation to become effective agents of change in addressing climate challenges.
Two kinds of solar thermal power generation systems (trough and tower) are selected as the research objects. The life cycle assessment (LCA) method is used to make a systematic and comprehensive environmental impact assessment on the trough and tower solar thermal power generation. This paper mainly analyzes the three stages of materials, production and transportation of two kinds of solar thermal power generation, calculates the unit energy consumption and environmental impact of the three stages respectively, and compares the analysis results of the two systems. At the same time, Rankine cycle is used to compare the thermal efficiency of the two systems.
Copyright © by EnPress Publisher. All rights reserved.