This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
In green construction, sustainable resources are essential. One such material is copper, which is widely utilized in electronics, transportation, manufacturing, and residential buildings. As a very useful material, it has many beneficial impacts on human life. Observed from the recent demand spike is in line with the overall trend and the current growing smelter construction in Indonesia. Researchers intend to adapt the existing Copper Smelting Plant Building into an environmentally friendly building as a part of the production chain, in addition to reducing public and environmental concerns about the consequences of this development. We have identified a disparity in cost, where the high cost of green buildings is an obstacle to its implementation to enhance the cost performance with increased renewable energy of the Smelter Construction Building, this study investigates the application of LEED parameters to evaluate green retrofit approaches through system dynamics. The most relevant features of the participant assessments were identified using the SEM-PLS approach, which is used to build and test statistical models of causal models. We have results for this Green Retrofitting study following significant variables according to the following guidelines: innovation, low-emission materials, renewable energy, daylighting, reducing indoor water usage, rainwater management, and access to quality transit.
This study analyzes the studies on project finance (PF) and renewable energy (RE) arena, employing a comprehensive scientometric analysis to illuminate the current research landscape, identify prominent scholars, and uncover emerging trends. Encompassing several analyses, we have charted the evolution of this domain from 1993 to March 2024 and showed the way for further research. We analyzed 80 studies selected from several databases by means scientometric tools. Despite decent citation rates, research in this relatively young field is surprisingly scarce. While geographically diverse, research leadership stems from the UK, USA, Australia, and Germany. Interestingly, a significant portion of the studies originates from broad energy and sustainability areas, highlighting a potential knowledge gap in finance and economics areas. Additionally, the prevalence of case studies points to a strong connection between theory and practice. The research also revealed prominent topics like the interplay between PF and RE, various renewable resources, infrastructure development, financial considerations, risk management, among others. While many themes exist, areas like technological advancements, diverse cost approaches, valuation methodologies, and policy considerations remain underexplored. Other results unveiled an unexpected finding: limited evidence of large-scale collaborations, with individual or small-group research efforts currently dominating the field. However, existing collaborative networks promise future advancements through the emergence of more formalized research groups, which can perform future research endeavors with a wide spectrum of unexplored topics.
This research analyzes the relationship between political stability, renewable energy utilization, economic progress, and tourism in Indonesia from 1990 to 2020. We employ advanced econometric techniques, including the Fourier Bootstrap Autoregressive Distributed Lag (ARDL) approach and Fourier Toda-Yamamoto causality testing, to ensure the robustness of our results while accounting for smooth structural changes in the data. The analysis uncovers a long-term equilibrium relationship between tourism and its fundamental determinants. Our research reveals significant positive impacts of political stability and renewable energy consumption on tourism in Indonesia. A stable political environment creates a favorable climate for tourism development, instilling confidence in both domestic and international tourists. Promoting renewable energy usage aligns with sustainable tourism practices, attracting environmentally conscious travelers. Furthermore, our findings demonstrate a bi-directional causal relationship between these variables over time. Changes in political stability, renewable energy consumption, and economic growth profoundly influence the tourism sector, while the growth of tourism itself can also stimulate economic development and foster political stability. Our findings underscore the need for environmentally sustainable and politically stable tourism policies. Indonesia’s tourism sector can grow sustainably with renewable energy and stability. Policymakers can develop strategies with tourism, political stability, renewable energy, and economic prosperity in mind.
With the increasing climate change crisis, the ongoing global energy security challenges, and the prerequisites for the development of sustainable and affordable energy for all, the need for renewable energy resources has been highlighted as a global aim of mankind. However, the worldwide deployment of renewable energy calls for large-scale financial and technological contributions which many States cannot afford. This exacerbates the need for the promotion of foreign investments in this sector, and protecting them against various threats. International Investment Agreements (IIAs) offer several substantive protections that equally serve foreign investments in this sector. Fair and Equitable Treatment (FET) clauses are among these. This is a flexible standard of treatment whose boundaries are not clearly defined so far. Investment tribunals have diverse views of this standard. Against this background, this article asks: What are the prominent international renewable energy investment threats, and how can FET clauses better contribute to alleviating these concerns? Employing a qualitative method, it analyses the legal aspects and properties of FET and concludes that the growing security and regulatory threats have formed a sort of modern legitimate expectations on the part of renewable energy investors who expect host states to protect them against such threats. Hence, IIAs and tribunals need to uphold a definite and broadly applicable FET approach to bring more consistency and predictability to arbitral awards. This would help deter many unfavourable practices against investments in this sector.
Copyright © by EnPress Publisher. All rights reserved.