The article addresses the issue of educational development policy in Ukraine: the main trends and ways, means, technologies of their implementation. It has been observed that educational policy is developing and changing under the influence of such factors as Russia’s military actions against our country, European integration and globalisation. It has been taken into account that globalisation trends in the world integration, according to which globalisation processes should be reflected not only in the foreign economic, political or technological spheres, but also, as a consequence, in the development of technologies for training future teachers. Integration of digital technologies in the educational process is one of the key tendencies in the modern educational policy in Ukraine. The characteristics of the most used technologies of augmented reality in the modern school of Ukraine have been outlined. The algorithm for displaying generalized information about a particular application was proposed, namely: payment, accessibility, language, system requirements; learning opportunities; practical value; website; video about the application. The model of the formation of future teachers’ skills to use augmented reality technologies in the process of natural sciences studying has been proposed. We consider it as a component of a holistic system of future teachers’ professional training. The conceptual basis for the development of the model is a multi-subject educational paradigm, which is considered to be open, self-developing and self-organizing, causing a fundamental change in the behavior and relationships of the educational process participants. The proposed model is implemented in the authors’ methodological system, which ensures the interconnected activities of all participants in the educational process. Its systemic factor is the goal of improving the quality of the future natural sciences teachers’ professional training by developing their skills in using AR technology. The end result is an increase in the level of future natural sciences teachers’ readiness to use AR technology in their professional activities.
The purpose of this research study is to identify the factors of knowledge sharing among library professionals of higher educational institutions of Pakistan. There are very few studies on the knowledge exchange between library professionals in Pakistan’s higher education institutions. In this study model which has all the elements used to examine the knowledge sharing, in the study researcher investigate the impact of technological, organizational and individual on library professionals’ knowledge sharing behavior. The study adopted a descriptive survey design as research design and quantitative as type of research type. Questionnaire was adapted and used to collect data from 240 librarians through Google form survey in the higher educational institutions. The population of study is higher educational institutions of Pakistan. Convenience sampling techniques was used for data collection. The data were analyzed through the measurement model and structural equation model (PLS-SEM). The results of the study technological development, organizational development and individual development are significant for knowledge sharing in higher educational intuitions in Pakistan. This study gave new insights through to policy makers for the future polices to higher authorities.
This contribution questions young people’s access to digital networks at the scale of intermediate cities in Saint-Louis. Thus, it analyzes the prescriptions of digital actors responsible for the development of digital economy in relation with the orientations of the Senegal Digital 2025 strategy. This is a pretex to highlight the gaps between official political discourses and the level of deployment of digital infrastructures. The study highlights the need to repoliticize the needs of populations for broadband and very high-speed connections to promote local initiatives for youth participation in Saint-Louis. Indeed, datas relating to access and use of the Internet by young people reveal inequalities linked to household income, the disparity of infrastructure and digital equipment, and the discontinuity in neighborhood development, but also to the adaptability of the internet service marketed. Through urban and explanatory sociology mobilized through the approach of young people’s real access to the Internet, our analyzes have shown at the scale of urban neighborhoods the impact of the actions recommended by those involved in the development of populations’ access to Internet. The result is that the majority of young people are forced to access the Internet through medium-speed mobile networks.
This study aims to investigate the enhancement in electrical efficiency of a polycrystalline photovoltaic (PV) module. The performance of a PV module primarily depends upon environmental factors like temperature, irradiance, etc. Mainly, the PV module performance depends upon the panel temperature. The performance of the PV module has an inverse relationship with temperature. The open circuit voltage of a module decreases with the increase in temperature, which consequently leads to the reduction in maximum power, efficiency, and fill factor. This study investigates the increase in the efficiency of the PV module by lowering the panel temperature with the help of water channel cooling and water-channel accompanied with forced convection. The two arrangements, namely, multi-inlet outlet and serpentine, are used to decrease the temperature of the polycrystalline PV module. Copper tubes in the form of the above arrangements are employed at the back surface of the panel. The results demonstrate that the combined technique is more efficient than the simple water-channel cooling technique owing to multi-heat dissipation and effective heat transfer, and it is concluded that the multi-inlet outlet cooling technique is more efficient than the serpentine cooling technique, which is attributed to uniform cooling over the surface and lesser pressure losses.
This study focuses on the use of the Soil and Water Assessment Tool (SWAT) model for water budgeting and resource planning in Oued Cherraa basin. The combination of hydrological models such as SWAT with reliable meteorological data makes it possible to simulate water availability and manage water resources. In this study, the SWAT model was employed to estimate hydrological parameters in the Oued Cherra basin, utilizing meteorological data (2012–2020) sourced from the Moulouya Hydraulic Basin Agency (ABHM). The hydrology of the basin is therefore represented by point data from the Tazarhine hydrological station for the 2009–2020 period. In order to optimize the accuracy of a specific model, namely SWAT-CUP, a calibration and validation process was carried out on the aforementioned model using observed flow data. The SUFI-2 algorithm was utilized in this process, with the aim of enhancing its precision. The performance of the model was then evaluated using statistical parameters, with particular attention being given to Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The NSE values for the study were 0.58 for calibration and 0.60 for validation, while the corresponding R2 values were 0.66 and 0.63. The study examined 16 hydrological parameters for Oued Cherra, determining that evapotranspiration accounted for 89% of the annual rainfall, while surface runoff constituted only 6%. It also showed that groundwater recharge was pretty much negligible. This emphasized how important it is to manage water resources effectively. The calibrated SWAT model replicated flow patterns pretty well, which gave us some valuable insights into the water balance and availability. The study’s primary conclusions were that surface water is limited and that shallow aquifers are a really important source of water storage, especially for irrigation during droughts.
Copyright © by EnPress Publisher. All rights reserved.