With the continuous development of network has also greatly developed, exploring the role of social network relationships and attachment emotions on consumer intention helps community managers to promote community purchases for more consumer. As another core component of social e-commerce, social media influencer also has a significant influence on consumer intention. This study systematically analyzed the effects of social network relationships and social media influencer characteristics on consumer purchase intentions. Introduced consumer attachment and perceived value as mediating variables to construct the research framework of this study. This article adopts quantitative analysis methods to test the research hypotheses proposed. This article collected 600 first-hand data in the form of a survey questionnaire and analyzed the data using AMOS and SPSS statistical software. The empirical analysis in this article confirms that social network relationships has a significant impact on consumer purchase intentions; social media influencer characteristics has a significant impact on consumer purchase intentions; consumer attachment has a significant impact on perceived value; consumer attachment plays a mediating role in the effect of social network relationships on consumers purchase intentions; perceived value plays no mediating role in the effect of social media influencer characteristics on consumer purchase intentions; perceived value plays a mediating role in the effect of consumer attachment on consumer purchase intentions; consumer attachment and perceived value have a chain mediating role between social network relationships and consumer purchase intentions.
This study examines the intricate interplay between the digital environment and the evolving communication dynamics of Generation Z, specifically focusing on the impact of social media on familial bonds. The research objective is to explore the ways in which Generation Z’s social media consumption patterns shape their relationships and lives, providing insights into the intricate interplay between technology and human connections. Adopting Hirschi and Wellman’s theoretical framework, this investigation employs a survey method, utilizing a questionnaire to gather data from 384 Iranian Generation Z social media users. The findings reveal a significant and negative correlation between family bonds and social media usage, dependency on the platform, and support received from it. Excessive use diminishes interaction and intimacy, highlighting social media’s potential consequences for family relationships, which are crucial for individual and societal well-being. The study underscores the significance of balanced social media usage and encourages initiatives promoting face-to-face interactions, empathy, and responsible digital citizenship. The findings hold significant implications for academics and policymakers in developing strategies that promote responsible digital habits, foster healthy relationships, and contribute to digital citizenship advancement. This may involve regulatory initiatives, guidelines for social media platforms, and public awareness campaigns emphasizing the importance of balanced digital habits.
Social media influencer marketing has emerged as an essential marketing strategy in the online interactive environment. This study investigates the impact of influencer-consumer fit (ICF) on behavioral intentions; intention to co-create brand value (ICC) and purchase intention (PI), with the serial mediation of influencer authenticity (IA) and attitude toward brand (ATB). A self-administered questionnaire was distributed to followers of social media influencers in Pakistan. The data were collected from 421 female followers of social media influencers through survey and partial least squares—structural equation modeling was used for data analysis. The findings reveal that ICF impacts IA, while the latter impacts ATB. ATB in turn impacts behavioral intentions. The direct effects suggest that ICF impacts consumers’ PI but not the ICC. However, with the serial mediation of IA and ATB, the relationship becomes significant. The findings of this study may assist managers in building brand strategies to achieve excellence in a highly dynamic and competitive market by leveraging the power of influencer marketing.
Countering cyber extremism is a crucial challenge in the digital age. Social media algorithms, if designed and used properly, have the potential to be a powerful tool in this fight, development of technological solutions that can make social networks a safer and healthier space for all users. this study mainly aims to provide a comprehensive view of the role played by the algorithms of social networking sites in countering electronic extremism, and clarifying the expected ease of use by programmers in limiting the dissemination of extremist data. Additionally, to analyzing the intended benefit in controlling and organizing digital content for users from all societal groups. Through the systematic review tool, a variety of previous literature related to the applications of algorithms in the field of online radicalization reduction was evaluated. Algorithms use machine learning and analysis of text and images to detect content that may be harmful, hateful, or call for violence. Posts, comments, photos and videos are analyzed to detect any signs of extremism. Algorithms also contribute to enhancing content that promotes positive values, tolerance and understanding between individuals, which reduces the impact of extremist content. Algorithms are also constantly updated to be able to discover new methods used by extremists to spread their ideas and avoid detection. The results indicate that it is possible to make the most of these algorithms and use them to enhance electronic security and reduce digital threats.
The rise of digital communication technologies has significantly changed how people participate in social protests. Digital platforms—such as social media—have enabled individuals to organize and mobilize protests on a global scale. As a result, there has been a growing interest in understanding the role of digital communication in social protests. This manuscript provides a comprehensive bibliometric analysis of the evolution of research on digital communication and social protests from 2008 to 2022. The study employs bibliometric methodology to analyze a sample of 260 research articles extracted from the SCOPUS core collection. The findings indicate a significant increase in scholarly investigations about digital communication and its role in social protest movements during the past decade. The number of publications on this topic has increased significantly since 2012—peaking in 2022—indicating a heightened interest following COVID-19. The United States, United Kingdom, and Spain are the leading countries in publication output on this topic. The analysis underlines scholars employing a range of theoretical perspectives—including social movement theory, network theory, and media studies—to identify the relationship between digital communication and social protests. Social media platforms—X (Twitter), Facebook, and YouTube—are the most frequently studied and utilized digital communication tools engaged in social protests. The study concludes by identifying emerging topics relating to social movements, political communication, and protest, thereby suggesting gaps and opportunities for future research.
Electronic Word of Mouth (eWOM) has become a pivotal factor influencing consumers’ decisions, particularly in the context of hotel services. With the advent of social media, it provides individuals with powerful tools to share its experiences and opinions about hotels. In this digital age, customers increasingly rely on online reviews and recommendations from their peers when selecting accommodations. eWOM on social media platforms has a substantial impact on customers’ perceptions and decision-making processes. This study aims to better understand the influence of eWOM by social media platforms on purchase intention of hotel services. To understand the influence of eWOM, this study uses the information adoption model as the model has been widely used in previous eWOM studies. The information quantity construct has been added to strengthen the model. The online questionnaire was distributed to social media users by using Google forms via social media platforms and only 210 of them were responded. The SmartPLS 4.0 software is used to analyze the data as the Partial Least Square-Structural Equation Modelling (PLS-SEM) is a method to confirm the structural equation models and to test the link between inert developments. Based on results, the information quantity and information quality of hotel services on eWOM positively influences the information usefulness and the information usefulness of hotel services on eWOM positively influences the purchase intention. The results lead to increase sales of hotel services and contribute to economic growth.
Copyright © by EnPress Publisher. All rights reserved.