Governments intervene in the housing market via implementing various monetary, fiscal, foreign exchange and credit policies. By this, the housing market undergoes cycles of boom and bust as well as significant swings in value added and housing prices. Therefore, the main goal of this research is to consider the effect of the government’s change on the monetary and financial policy’s impact on the business cycles of the housing sector during the period of 1978–2020. On the other hand, we estimate the impact of monetary and fiscal policies on housing business cycles concerning government’s change. To calculate housing business cycles (boom and busts), the housing value added were initially de-trended using the Hodrick–Prescott filter. This paper takes a novel use of the threshold regression model with government’s change as threshold variable. According to the study’s findings, there are three threshold effects (two threshold levels or three regimes) of monetary and fiscal policy on housing business cycles. For instance, the money supply coefficient in the first regime was −1.68, indicating that the effect of monetary policy in this regime is countercyclical. in the second and third regimes, it was 0.19 and 0.03, respectively; indicating its alignment with the housing business cycle. Regarding the estimated models, we may derive several interesting conclusions. In first regime, the money supply is countercyclical and government expenditure is pro-cyclical. This means that monetary policy exacerbates recession and fiscal policy weakens it. in the second and third regimes, the money supply is pro-cyclical and government expenditure is countercyclical. As a result, while formulating their monetary policies, governments should give the housing sector more consideration. Additionally, when putting this policy into practice, the housing sector has to be carefully examined.
Cross-border infrastructure projects offer significant economic and social benefits for the Asia-Pacific region. If the required investment of $8 trillion in pan-Asian connectivity was made in the region’s infrastructure during 2010–2020, the total net income gains for developing Asia could reach about $12.98 trillion (in 2008 US dollars) during 2010–2020 and beyond, of which more than $4.43 trillion would be gained during 2010–2020 and nearly $8.55 trillion after 2020. Indeed, infrastructure connectivity helps improve regional productivity and competitiveness by facilitating the movement of goods, services and human resources, producing economies of scale, promoting trade and foreign direct investments, creating new business opportunities, stimulating inclusive industrialization and narrowing development gaps between communities, countries or sub-regions. Unfortunately, due to limited financing, progress in the development of cross-border infrastructure in the region is low.
This paper examines the key challenges faced in financing cross-border projects and discusses the roles that different stakeholders—national governments, state-owned enterprises, private sector, regional entities, development financing institutions (DFIs), affected people and civil society organizations—can play in facilitating the development of cross-border infrastructure in the region. In particular, this paper highlights the major risks that deter private sector investments and FDIs and provides recommendations to address these risks.
Numerical study of subcooled and saturated flow boiling in the curved and helically coiled tubes in presence of phase change is one of the challenging area of CFD studies. In this paper, the CFD modeling of the nucleate and convective flow boiling in the small helically coiled tube at low vapor quality (up to the 18.93 percent) region is studied. A proper Eulerian-based mathematical model is used for interphase exchange forces and heat transfer between two phases in CFD modeling using Bulk boiling model. The results show that, the inner and the bottom wall of the helically coiled tube have the lowest and the highest heat transfer coefficient, respectively. The effect of change in coil diameter, helical pitch and tube diameter is investigated on the counters of vapor volume fraction. It is seen that at low vapor quality flows, the heat transfer coefficient is enhanced by decreasing in coil diameter, tube diameter and increasing in coil pitch of helically coiled tube.
In this policy insight, the author lays out the context of the BRI and its role in global development. He also explains why the US should consider working with China on the BRI. The author opines on China’s possible approach and strategy to get global private investors to come on board for the massive BRI projects. He suggests that the global players can establish a third-party market cooperation and coordination mechanism to turn the BRI into a platform for win-win global collaboration.
Traditional building heating warms entire rooms, often leaving some dissatisfied with uneven warmth. Recently, the personalized heating system has addressed this by providing targeted warmth, enhancing comfort and satisfaction. The personalized heating system in this study is a new enclosed personalized heating system consisting of a semi-enclosed heating box and an insulated chair covered with a thick blanket. The study compares the heating effects of semi-enclosed and enclosed localized heating systems on the body and examined changes in subjects’ thermal sensations. Due to the lower heat loss of the enclosed personalized heating system compared to the semi-enclosed version, it created thermal micro-environments with higher ambient temperatures. The maximum air temperature increase within the enclosed system was twice that of the semi-enclosed system, with the heating film surface temperature rising by up to 6.87 ℃. Additionally, the temperature of the skin could increase by as much as 6.19 ℃, allowing individuals to maintain thermal neutrality even when the room temperature dropped as low as 8 ℃. A two-factor repeated measures analysis of variance revealed differences in temperature sensitivity across various body regions, with the thighs showing a notably higher response under high-power heating conditions. The corrective energy and power requirements of the enclosed personalized heating system also made it more energy-efficient than other personalized heating systems, with a minimum value reaching 6.07 W/K.
Copyright © by EnPress Publisher. All rights reserved.