Spiritual Intelligence (SI) has become a key contributor towards enhancing employee well-being and job satisfaction (JS) in the modern competitive business world. This study examines the impact of SI on JS among Sri Lankan IT professionals, considering gender’s role in this relationship. Analyzing data from 383 respondents using Partial Least Square Structural Equation Modeling (PLS-SEM), the study reveals a strong positive correlation between SI and JS, with no moderating effect on gender. The study highlights the importance of embedding SI into HR and organizational policies to enhance workforce resilience and retention while contributing to broader industry development and global competitiveness in the IT sector.
Project risk management in the mining industry is necessary to identify, analyze and reduce uncertainty. The engineering features of mining enterprises, by their nature, require improved risk management tools. This article proves the relevance of creating a simulation model of the production process to reduce uncertainty when making investment decisions. The purpose of the study is to develop an algorithm for deciding on the economic feasibility of creating a simulation experiment. At the same time, the features and patterns of the cases for which the simulation experiment was carried out were studied. Criteria for feasibility assessment of the model introduction based on a qualitative parameters became the central idea for algorithm. The relevance of the formulated algorithm was verified by creating a simulation model of a potassium salt deposit with subsequent optimization of the production process parameters. According to the results of the experiment, the damage from the occurrence of a risk situations was estimated as a decrease in conveyor productivity by 32.6%. The proposed methods made it possible to minimize this risk of stops in the conveyor network and assess the lack of income due to the risk occurrences.
This study aims to examine the impact of an innovative self-directed professional development (SDPD) model on fostering teachers’ professional development and improving their ability to manage this development independently. A quantitative research method was adopted, involving 60 participants from Almaty State Humanitarian and Pedagogical College No. 2, Almaty, Kazakhstan. Descriptive and inferential statistics were used to assess the SDPD model’s effectiveness, specifically in promoting teacher engagement, adoption of new pedagogical techniques, and improvement in reflective practices. The study findings reveal that teachers, particularly in developing regions, often face challenges in accessing formal professional development programs. The implementation of the SDPD model addresses these barriers by providing teachers with the tools and strategies required for self-improvement, regardless of geographic or economic constraints. The study participants in the pilot phase showed increased engagement with new pedagogical methods, improved reflective practices, and greater adaptability to emerging educational technologies. The algorithmic aspect of the model streamlined the professional development process, while the activity-based approach ensured that learning remained practical and relevant to teachers’ everyday needs. By offering a clear framework for continuous improvement, the model addresses the gaps in formal training access and cultivates a culture of lifelong learning. These findings suggest that the SDPD model can contribute to elevating teaching standards globally, particularly in regions with limited professional development resources.
Accurate temperature control during the induction heating process of carbon fiber reinforced polymer (CFRP) is crucial for the curing effect of the material. This paper first builds a finite element model of induction heating, which combines the actual fiber structure and resin matrix, and systematically analyzes the heating mechanism and temperature field distribution of CFRP during the heating process. Based on the temperature distribution and variation observed in the material heating process, a PID control method optimized by the sparrow search algorithm is proposed, which effectively reduces the temperature overshoot and improves the response speed. The experiment verifies the effectiveness of the algorithm in controlling the temperature of the CFRP plate during the induction heating process. This study provides an effective control strategy and research method to improve the accuracy of temperature control in the induction heating process of CFRP, which helps to improve the results in this field.
The purpose of this paper is to explore the performance of ridge regression and the random forest model improved by genetic algorithm in predicting the Boston house price data set and conduct a comparative analysis. To achieve it, the data is divided into training set and test set according to the ratio of 70-30. The RidgeCV library is used to select the best regularization parameter for the Ridge regression model, and for the random forest model, the genetic algorithm is used to optimize the model's hyperparameters. The result shows that compared with ridge regression, the random forest model improved by genetic algorithm can perform better in the regression problem of Boston house prices.
Copyright © by EnPress Publisher. All rights reserved.