Brain tumors are a primary factor causing cancer-related deaths globally, and their classification remains a significant research challenge due to the variability in tumor intensity, size, and shape, as well as the similar appearances of different tumor types. Accurate differentiation is further complicated by these factors, making diagnosis difficult even with advanced imaging techniques such as magnetic resonance imaging (MRI). Recent techniques in artificial intelligence (AI), in particular deep learning (DL), have improved the speed and accuracy of medical image analysis, but they still face challenges like overfitting and the need for large annotated datasets. This study addresses these challenges by presenting two approaches for brain tumor classification using MRI images. The first approach involves fine-tuning transfer learning cutting-edge models, including SEResNet, ConvNeXtBase, and ResNet101V2, with global average pooling 2D and dropout layers to minimize overfitting and reduce the need for extensive preprocessing. The second approach leverages the Vision Transformer (ViT), optimized with the AdamW optimizer and extensive data augmentation. Experiments on the BT-Large-4C dataset demonstrate that SEResNet achieves the highest accuracy of 97.96%, surpassing ViT’s 95.4%. These results suggest that fine-tuning and transfer learning models are more effective at addressing the challenges of overfitting and dataset limitations, ultimately outperforming the Vision Transformer and existing state-of-the-art techniques in brain tumor classification.
With society’s continuous development and progress, artificial intelligence (AI) technology is increasingly utilized in higher education, garnering increased attention. The current application of AI in higher education impacts teachers’ instructional methods and students’ learning processes. While acknowledging that AI advancements offers numerous advantages and contribute significantly to societal progress, excessive reliance on AI within education may give rise to various issues, students’ over-dependence on AI can have particularly severe consequences. Although many scholars have recently conducted research on artificial intelligence, there is insufficient analysis of the positive and negative effects on higher education. In this paper, researchers examine the existing literature on AI’s impact on higher education to explore the opportunities and challenges presented by this super technology for teaching and learning in higher educational institutions. To address our research questions, we conducted literature searches using two major databases—Scopus and Web of Science—and we selected articles using the PRISMA method. Findings indicate that AI plays a significant role in enhancing student efficiency in academic tasks and homework; However, when considering this issue from an ethical standpoint, it becomes apparent that excessive use of AI hinders the development of learners’ knowledge systems while also impairing their cognitive abilities due to an over-reliance on artificial technology. Therefore, our research provides essential guidance for stakeholders on the wise use of artificial intelligence technology.
The financial services industry is experiencing a swift adoption of artificial intelligence (AI) and machine learning for a variety of applications. These technologies can be employed by both public and private sector entities to ensure adherence to regulatory requirements, monitor activities, evaluate data accuracy, and identify instances of fraudulent behavior. The utilization of artificial intelligence (AI) and machine learning (ML) has the potential to provide novel and unforeseen manifestations of interconnectivity within financial markets and institutions. This can be represented by the adoption of previously disparate data sources by diverse institutions. The researchers employed convenience sampling as the sampling method. The form was filled out over the period spanning from July 2023 to February 2024, and it was designed to be both anonymous and accessible through online and offline platforms. To assess the reliability and validity of the measurement scales and evaluate the structural model, we employed Partial Least Squares (PLS) for model validation. Specifically, we have used the software package Smart-PLS 3 with a bootstrapping of 5000 samples to estimate the significance of the parameters. The results indicate a positive and direct connection between artificial intelligence (AI) and either financial services or financial institutions. On the contrary, machine learning (ML) exhibits a strong and positive association among financial services and financial institutions. Similarly, there exists a positive and direct connection between AI and investors, as well as between ML and investors.
This study examines how Artificial Intelligence (AI) enhances Sharia compliance within Islamic Financial Institutions (IFIs) by improving operational efficiency, ensuring transparency, and addressing ethical and technical challenges. A quantitative survey across five Saudi regions resulted in 450 validated responses, analyzed using descriptive statistics, ANOVA, and regression models. The findings reveal that while AI significantly enhances transparency and compliance processes, its impact on operational efficiency is limited. Key barriers include high implementation costs, insufficient structured Sharia datasets, and integration complexities. Regional and professional differences further underscore the need for tailored adoption strategies. It introduces a novel framework integrating ethical governance, Sharia compliance, and operational scalability, addressing critical gaps in the literature. It offers actionable recommendations for AI adoption in Islamic finance and contributes to the global discourse on ethical AI practices. However, the Saudi-specific focus highlights regional dynamics that may limit broader applicability. Future research could extend these findings through cross-regional comparisons to validate and refine the proposed framework. By fostering transparency and ethical governance, AI integration aligns Islamic finance with socio-economic goals, enhancing stakeholder trust and financial inclusivity. The study emphasizes the need for targeted AI training, the development of structured Sharia datasets, and scalable solutions to overcome adoption challenges.
Global trade is based on coordinated factors, that means labor and products are moved from their point of origin to the point of use. Strategies have a significant impact on global trade because they enable the effective development of goods across international borders. The decision making is an important task for the development of Logistics Supply Chain (LSC) infrastructure and process. Decisions on supplier selection, production schedule, transportation routes, inventory levels, pricing strategies, and other issues need to be made. These decisions may have a big influence on customer service, profitability, operational efficiency, and overall competitiveness. The Artificial Intelligence (AI) approach of Fuzzy Preference Ranking Organization Method for Enrichment Evaluation (Fuzzy-Promethee-2) is used to assess the priority selection of the factors associated with the LSC and evaluate the importance in global trade. The role of AI is very useful compare to statistical analysis in terms of decision making. The computational analysis placed promotion of exports as the most important priority out of five selected attributes in LSC, with infrastructure development. The result suggests that LSC depends heavily on export promotion as the most significant attribute. Infrastructural development also appeared another factor influencing LSC. The foreign investment was ranked the lowest. The evaluated results are useful for the policy makers, supply chain managers and the logistics professionals associated with the supply chain management.
The linkages between adequate service delivery and sustainable development have been given a little academic attention in the South Africa’s local municipalities. For this reason, the achievement of sustainable development has been difficult which has culminated in the occurrence of service delivery protests. These service delivery protests have posed critical threats to social security thus affecting the possibility to achieve sustainable development in South Africa. the paper findings showed that the delivery of inadequate services to the citizens is triggered by the failure to equally include citizens in the process. One of the threats that the paper found is the fact that these service delivery protests have become a major issue and any move to solve them without citizen participation has been unsuccessful. The paper findings also showed that that the lack of adequate service delivery to the citizens causes human insecurities which in turn affect the achievement of sustainable development. This is because the occurrence of the service delivery protests deteriorates national economic growth and human growth. They affect foreign investors and international tourists by instilling fear in them and yet they are contributors to sustainable economic growth that leads to sustainable development. The findings of this paper also presented that the use of Artificial Intelligence (AI) technologies can increase citizen participation during service delivery. It is through the use of citizen participation that openness, transparency, accountability, and representation principles that promote the delivery of adequate services are possible. The paper found that using AI technologies would also foster trust between the service provider and service receiver needed for delivering adequate services, thus achieve sustainable development in South Africa.
Copyright © by EnPress Publisher. All rights reserved.