The study employed a qualitative approach to determine the influence and effectiveness of storytelling in shaping the Alpha generation’s buying decisions and consumption behaviours. The students of the University of Lagos Junior Secondary School were selected for the study. The interview questions were set to focus on factors like experiences, sources of storytelling communication, the outcomes and the affective effects. Twenty-five students were purposively selected out of one hundred and twelve (112) population for the interview based on the conditions for selection. Thematic analysis was used and a total of 244 themes were identified. Four (4) major themes were later identified in thematic synthesis through coding translation. The findings revealed that storytelling is effective and strategic in brands targeted at the Alpha generation, hence, the generation relied on storytelling to choose brands in convenience, impulsive and shopping products, and radio and television were the main sources of storytelling campaigns among the generation. Storytelling wrapped in songs, entertainment, dancing, drama, etc. captivated and influenced the generation, and children used the information from the storytelling campaigns to influence family purchase decisions and parents’ buying decisions and behaviours.
Recent times have seen significant advancements in AI and NLP technologies, poised to revolutionize logistical decision-making across industries. This study investigates integrating ChatGPT, an advanced AI language model, into strategic, tactical, and operational logistics. Examining its applicability, benefits, and limitations, the study delves into ChatGPT’s capacity for strategic logistics planning, facilitating nuanced decision-making through natural language interactions. At the tactical level, it explores ChatGPT’s role in optimizing route planning and enhancing real-time decision support. The operational aspect scrutinizes ChatGPT’s capabilities in micro-level logistics and emergency response. Ethical implications, encompassing data security and human-AI trust dynamics, are also analyzed. This report furnishes valuable insights for the logistics sector, emphasizing AI’s potential in reshaping decision-making while underscoring the necessity for foresight, evaluation, and ethical considerations in AI integration. In this publication, it is assumed that ChatGPT is not entirely reliable for decision-making in the logistics field: at the strategic level, it can be effectively used for “brainstorming” in preparing decisions, but at the tactical and operational level, the depth of the knowledge is not sufficient to make appropriate decisions. Therefore, the answers provided by ChatGPT to the defined logistic tasks are compared with real logistic solutions. The article highlights ChatGPT’s effectiveness at different levels of logistics and clarifies its potential and limitations in the logistics field.
Infrastructure decision-making has traditionally been focused on the use of cost-benefit analysis (CBA) and multicriteria decision analysis (MCDA). Nevertheless, there remains no consensus in the infrastructure sector regarding a favored approach that comprehensively integrates resilience principles with those tools. This review focuses on how resilience has been evaluated in infrastructure projects. Initially, 400 papers were sourced from Web of Science and Scopus. After a preliminary review, 103 papers were selected, and ultimately, the focus was narrowed down to 56 papers. The primary aim was to uncover limitations in both CBA and MCDA, exploring various strategies for amalgamating them and enhancing their potential to foster resilience, sustainability, and other infrastructure performance aspects. Results were classified based on different rationalities: i) objectivist, ii) conformist, iii) adjustive, and iv) reflexive. The analysis revealed that while both CBA and MCDA contribute to decision-making, their perceived strengths and weaknesses differ depending on the chosen rationality. Nonetheless, embracing a broader perspective, fostering participatory methods, and potentially integrating both approaches seem to offer more promising avenues for assessing the resilience of infrastructures. The goal of this research proposal is to devise an integrated approach for evaluating the long-term sustainability and resilience of infrastructure projects and constructed assets.
The article examines the issues of application and improvement of the methodology for evaluating industrial enterprises as recipients of state support within the framework of the implementation of industrial policy. The authors considered approaches to the content of industrial policy, investigated the factors influencing its efficiency, identified aspects of its imperfections that arise when applying an incomplete list of important parameters of economic development and ambiguity in the interpretation of previously applied estimates. The article presents proposals to improve the methodology for assessing potential recipients of state support based on the development of a comprehensive indicator for assessing enterprises (recipients of support), taking into account not only the classical parameters of the economic efficiency of industrial enterprises applying for state financial assistance, but also such aspects as the development of budgetary funds, belonging to priority sectors of the economy, characteristics of sustainable development and export and innovation potential. Combining the results of a comprehensive assessment of the recipient of state support with a map of the business demography of the territory allows making a decision not only about the fact of support and its efficiency, but also to predict the assessment of the life cycle of the enterprise and its subsequent development.
Outsourcing logistics operations is a common trend as businesses prioritize core activities. Establishing a sustainable partnership between businesses and logistics service providers requires a systematic approach. This study is needed to develop a more effective and adaptive framework for logistics service provider selection by integrating diverse criteria and decision-making methodologies, ultimately enhancing the precision and sustainability of procurement processes. This study advocate for leveraging industry-based knowledge in procurement, emphasizing the need to define decision-making elements. The research analyzes nearly 300 logistics procurement projects, using a neural network-based methodology to propose a model that aids businesses in identifying optimal criteria for evaluating logistics service providers based on extensive industry knowledge. The goal of this study is to develop and test a practical model that would support businesses in choosing most suitable criteria for selection of logistics service providers based on cumulative market patterns. The results of this study are as follows. It introduces novel elements by gathering and systematizing unique market data using developed data processing methodology. It innovatively classifies decision-making elements, allocating them into distinct groups for use as features in a neural network. The study further contributes by developing and training a predictive model based on a prepared dataset, addressing pre-defined goals, expectations related to green logistics, and specific requirements in the tendering process for selecting logistics service providers. Study is concluded by summarizing suggestions for future research in area of adopting neural networks for selection of logistics service providers.
Copyright © by EnPress Publisher. All rights reserved.