Fraudulence in cosmetic ingredients is becoming increasingly prevalent, alongside the rising demand and utilization of cosmetics within the populace. One of the whitening agents still utilized in cosmetics is mercury, present in forms such as mercury chloramide (HgNH2Cl2) and mercury chloride (HgCl2). Prolonged mercury exposure can have adverse health effects. To address this issue, alternative mercury analysis methods in samples have been developed, including the utilization of silver nanoparticles amalgamated with sweet potato starch as a stabilizing agent. This paper aims to delve into the roles of silver nanoparticle AgNO3 and sweet potato starch (as a stabilizer) as a sensor for mercury detection, which can be applied in cosmetic products. Detection of mercury utilizing nanoparticles is based on the Surface Plasmon Resonance phenomenon, which endows a high level of selectivity and sensitivity toward the presence of mercury metal ions. When interaction occurs between mercury metal and silver nanoparticles, the liquid undergoes a color change from yellowish-brown to transparent. This phenomenon arises from the oxidation of AgO (yellow) to Ag+ ions (transparent) by the mercury metal. Consequently, a silver nanoparticle sensor utilizing sweet potato starch as a stabilizing agent exhibits the potential to detect mercury metal within a substance with high efficacy.
This paper investigates the evolving clustering and historical progression of “Asian regionalisms” concerning their involvement in multilateral treaties deposited in the United Nations system. We employ criteria such as geographic proximity, historical connections, cultural affinities, and economic interdependencies to identify twenty-eight candidate countries from East Asia, Southeast Asia, South Asia, and Central Asia for this empirical testing. Using a social network analysis approach, we model the network of these twenty-eight Asian state actors alongside 600 major treaties from the United Nations system, identifying clusters among Asian states by assessing similarities in their treaty participation behavior. Specifically, we observe dynamic changes in these clusters across three key historical eras: Post-war reconstruction and transformation (1945–1968), Cold War tensions and global transformations (1969–1989), and post-Cold War era and globalization (1990–present). Employing the Louvain cluster detection algorithm, the results reveal the evolution in cluster numbers and changes in membership status throughout the world timeline. The results also identify the current situation of six distinct Asian clusters based on states’ inclinations to engage or abstain from multilateral treaties across six policy domains. These findings provide a foundation for further research on the trajectories of Asian regionalisms amidst evolving global dynamics and offer insights into potential alliances, cooperation, or conflicts within the region.
Preserving roads involves regularly evaluating government policy through advanced assessments using vehicles with specialized capabilities and high-resolution scanning technology. However, the cost is often not affordable due to a limited budget. Road surface surveys are highly expected to use low-cost tools and methods capable of being carried out comprehensively. This research aims to create a road damage detection application system by identifying and qualifying precisely the type of damage that occurs using a single CNN to detect objects in real time. Especially for the type of pothole, further analysis is to measure the volume or dimensions of the hole with a LiDAR smartphone. The study area is 38 province’s representative area in Indonesia. This research resulted in the iRodd (intelligent-road damage detection) for detection and classification per type of road damage in real-time object detection. Especially for the type of pothole damage, further analysis is carried out to obtain a damage volume calculation model and 3D visualization. The resulting iRodd model contributes in terms of completion (analyzing the parameters needed to be related to the road damage detection process), accuracy (precision), reliability (the level of reliability has high precision and is still within the limits of cost-effective), correct prediction (four-fifths of all positive objects that should be identified), efficient (object detection models strike a good balance between being able to recognize objects with high precision and being able to capture most objects that would otherwise be detected-high sensitivity), meanwhile, in the calculation of pothole volume, where the precision level is established according to the volume error value, comparing the derived data to the reference data with an average error of 5.35% with an RMSE value of 6.47 mm. The advanced iRodd model with LiDAR smartphone devices can present visualization and precision in efficiently calculating the volume of asphalt damage (potholes).
Photovoltaic systems have shown significant attention in energy systems due to the recent machine learning approach to addressing photovoltaic technical failures and energy crises. A precise power production analysis is utilized for failure identification and detection. Therefore, detecting faults in photovoltaic systems produces a considerable challenge, as it needs to determine the fault type and location rapidly and economically while ensuring continuous system operation. Thus, applying an effective fault detection system becomes necessary to moderate damages caused by faulty photovoltaic devices and protect the system against possible losses. The contribution of this study is in two folds: firstly, the paper presents several categories of photovoltaic systems faults in literature, including line-to-line, degradation, partial shading effect, open/close circuits and bypass diode faults and explores fault discovery approaches with specific importance on detecting intricate faults earlier unexplored to address this issue; secondly, VOSviewer software is presented to assess and review the utilization of machine learning within the solar photovoltaic system sector. To achieve the aims, 2258 articles retrieved from Scopus, Google Scholar, and ScienceDirect were examined across different machine learning and energy-related keywords from 1990 to the most recent research papers on 14 January 2025. The results emphasise the efficiency of the established methods in attaining fault detection with a high accuracy of over 98%. It is also observed that considering their effortlessness and performance accuracy, artificial neural networks are the most promising technique in finding a central photovoltaic system fault detection. In this regard, an extensive application of machine learning to solar photovoltaic systems could thus clinch a quicker route through sustainable energy production.
Copyright © by EnPress Publisher. All rights reserved.