Dormancy is a state of lack of germination/sprouting in seed/tuber although required conditions (temperature, humidity, oxygen and light) are provided. Dormancy is based on hard seed coat dormancy or lack of supply and activity of enzymes (internal dormancy) necessary for germination/sprouting. Dormancy is an important factor limiting production in many field crops. Several physical and chemical pretreatments to production material (seed/tuber) are carried out for overcoming dormancy. Physical and physiological dormancy can be found together in some plants and this event makes it difficult to provide high frequency healthy seedling growth. Whereas, emerging of all production material (seed, tuber) sown/planted and forming healthy seedling are prerequisites of plant production.
The development of the personal innovative competences in workers is of capital importance for the competitiveness of organizations, where the ability of the employees must respond in an innovative way to diverse situations that arise in specific contexts. Considering this, the question arises: How do innovative employees’ competences affect the sustainable development of Micro, Small and Medium Enterprises (MSMEs)? Therefore, the objective of this work is to present a multi-criteria method based on the Analytic Network Process (ANP), to relate innovative personal competences and the sustainable development of MSMEs. An instrument was applied to groups of experts from 31 Ecuadorian fruit-exporting MSMEs, to develop a multi-criteria decisional network that allowed identifying the innovative personal abilities that have the greatest impact on the sustainable development of these organizations. The results demonstrate the relevance of the elements of innovative personal competencies, with a cumulative participation of 39.15%, Sustainable Export Development with 32.18% and Improvements with 28.66%. It also presents three types of analysis: i) Global to establish the weight of each variable; ii) Influences, to establish solid cause-effect relationships between the variables and iii) Integrated. The most relevant innovative personal competences for sustainable development and improvements for exporting SMEs are teamwork, critical thinking, and creativity within the international context.
Sweet cherry is a type of fruit that is high on demand in exports for table consumption. Turkey is a gene centre for sweet cherry fruit. Fruits are produced over an extended period because of the ecological richness and large cultivation area, which allows Turkey to remain as the leader of sweet cherry production in the world. The variety, ‘0900 Ziraat’, also known as the Turkish sweet cherry fruit, has the highest production volume. Mazzard and Mahaleb are the commonly used rootstocks for sweet cherry cultivation; and Mazzard is used more frequently than Mahaleb. Clonal rootstocks are used to maintain cultivation in new orchards. The present study provides a detailed information on the current status of sweet cherry fruit cultivation in Turkey as well as its cultivation practices and exports. It is targeted that modern irrigation techniques, good agricultural practices, and increased cultivation areas are established to maintain Turkey’s position as the leader in global sweet cherry production and exports.
Kinnow production is hampered due to the lack of micronutrient applications such as zinc (Zn), iron (Fe), and manganese (Mn), which play a significant role in the metabolic activities of the plant, affecting yield and quality. The farmers of the region use mineral micronutrient fertilizers, but it leads to phytotoxicity due to unoptimized fertilizer application dose. In the present investigation, an attempt has been made to optimize the Zn, Mn, and Fe minerals dose as tank mix foliar application for improvement of fruit yield, quality, and uptake of nutrients. The twelve combinations of different doses of zinc sulphate, manganese sulphate, and ferrous sulphate fertilizers replicated three times were tested at kinnow orchards established at Krishi Vigyan Kendra, Bathinda, Punjab, India. The data revealed that the fruit drop was significantly low in the treatment F12 (43.4%) (tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 ) compared to control treatment. The fruit yield per tree was significantly higher in the treatment F12 compared to untreated control. The juice percentage was also recorded higher in treatment F12 as compared to control, and the juice percentage improved by 2.6%. The leaf nutrient analysis also revealed translocation of higher amount of nutrient from leaf to fruit under optimized supply of micronutrient. Thus, the application of tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 may be used for better fruit yield and quality.
Open pitaya (Stenocereus thurberi) flowers were marked at 10, 20, 30 and 40 days after floration (DAF). When fruit were formed, they were collected from each of the dates with the objective of evaluating physical, physiological and quality changes before and after harvest. In fruits with different DAF, the analyses of fruit size (diameter and length), weight, density, firmness, color in pulp and peel (L*, a* and b*), respiration rate (CO2) and ethylene production were carried out. In the case of ripe and overripe fruit, in addition to the variables mentioned above, pH, percentage of total soluble solids TSS and total acidity (% citric acid equivalents) were evaluated. Fruit with 40 DAF were stored for up to 14 days at 25 ℃ and 80% RH to evaluate daily changes in respiration rate and ethylene production. It was found that during development the fruit tended to grow more in length than in diameter. In color, the best indicators of changes during fruit development were the parameters L* and b* for peel and for flesh L* and a*. For firmness in pitaya fruits, no significant differences were found with the methodology used. Changes in ethylene production and respiration rate during storage and development showed the usual behavior of climacteric fruits. Pitaya fruits with 40 FDD presented quality characteristics similar to those accepted by the consumer for this type of fruit. It is concluded that it is possible to evaluate the different stages of development in DDF of pitaya fruit based on the changes of the color space variables L*, a* and b*, in addition to the fact that the fruit follows the classical climacteric behavior.
Copyright © by EnPress Publisher. All rights reserved.