This study examines the economic feasibility of the environment-friendly farmland use policy to improve water quality. Conventional highland farming, polluting the Han River basin in South Korea, can be converted into environment-friendly farming through land acquisition or application of pesticide-free or organic farming practices. We estimate the welfare measures of improvement in water quality and the costs of policy implementation for economic analysis. To estimate the economic benefit of improvement in water quality experienced by the residents residing in mid-and-downstream areas of the Han River, the choice experiment was employed with a pivot-style experimental design approach. In the empirical analysis, we converted the household perception for water quality grades into scientific water quality measures using Water Quality Standard to estimate the value of changes in water quality. To analyze the costs required to convert conventional highland farmlands into environment-friendly farmlands, we estimated the relevant cost of land acquisition and the subsidy necessary for farm income loss for organic agricultural practice. We find that the agri-environmental policy is economically viable, which suggests that converting conventional highland farming into environment-friendly farming would make the improvement in water quality visible.
This study investigated the changing land use patterns and their impacts on ecosystem in the Teesta River Basin of northwestern Bangladesh. Although anthropocentric land use patterns, including agricultural land use, settlements, built areas, and waterbody loss, have been increasing in the Nilphamari district, by negatively affecting local ecosystems, they have not been identified by prior research. Limitations of contemporary literature motivated me to work on this crucial ground in the Teesta River Basin in Northwestern Bangladesh. This study applied a mixed research approach to identify the study objectives. Firstly, the land use and land cover (LULC) changes which occurred between 2000 and 2020 were detected using satellite imagery and supervised classification method. In addition to the detection of LULC changes, the study explored the people’s perceptions and experiences about the ecosystem changes resulted from the LULC changes over the last 20 years, conducting stakeholders’ consultations and household surveys utilizing a semi-structured questionnaire. The findings indicated that waterbodies in Nilphamari district have significantly decreased from 378 km2 in 2000 to 181 km2 in 2020. In the same way, the vegetation coverage has reduced 187 km2 between the years 2000 and 2020. On the contrary, agricultural lands (croplands) have increased from 595 km2 to 905 km2 and settlements have increased from 81 km2 to 206 km2 between the years 2000 and 2020. From the chi-square test, it was found a significant association between ecosystem change and biodiversity loss. It was further identified that waterbody decreases have significant impacts on aquatic ecosystems. The results of this study also indicated that due to the introduction of foreign tree species, local and native species have been significantly decreasing over the time. This study emphasizes the non-anthropocentric and inclusive land use policy implications for protecting life on land and preserving the aquatic ecosystem in Bangladesh.
Pattaya City is a well-known tourist destination in Thailand, famous for its beautiful beachfront, lively nightlife, and stunning natural scenery. Since 2019, the Eastern Special Development Zone Act, the so-called EEC (Eastern Economic Corridor), has positioned the city as a focal point for Meetings, Incentives, Conferences, and Exhibitions (MICE), boosting its tourism-driven economy. Infrastructure improvements in the region have accelerated urban development over the past decade. However, it is uncertain whether this growth primarily comes from development within existing areas or the expansion of urban boundaries and what direction future growth may take. To investigate this, research using the Cellular Automata-Markov model has been conducted to analyze land use changes and urban growth patterns in Pattaya, using land use data from the Department of Land for 2013 and 2017. The findings suggest an upcoming city expansion along the motorway, indicating that infrastructure improvements could drive rapid urbanization in coastal areas. This urban expansion emphasizes the need for urban management and strategic land use planning in coastal cities.
Objective: to achieve accurately and rapidly the mapping of agricultural land use and crop distribution at the township scale. Methods: this study, based on specific methods, such as, time-series remote sensing index threshold classification and maximum likelihood, classifies each land use type and extracts crop spatial information, under the guidance of Sentinel-2A remote sensing images, to carry out agricultural land use mapping at township scale. And the mapping concerned will be verified by comparing with an agricultural spatial information map of a 0.5 m resolution, which is based on WorldVieW-2 fused images. Results: (1) the area accuracy of grain and oil crop land, vegetable land, agricultural facilities land and garden land is fairly good, with 92.93%, 98.98%, 95.71% and 95.14% respectively, and within 8% variation from actual area; (2) the spatial information of plot boundary, farmland road network, and canal network produced by OSM road data and historical high-resolution images was overlayed with the classification results of Sentinel-2A multi-spectral image for mapping, which can improve the accuracy of plot boundary information of classification results for the image with 10 m resolution. Conclusions: the use of multi-source information fusion method, agricultural land use and crop distribution space big data produced by Sentinel-2A optical image, can effectively improve the accuracy and timeliness of land use mapping at the township scale, to provide technical reference for the application of remote sensing big data to carry out agricultural landscape analysis at the township scale, optimization and adjustment of agricultural structure, etc.
Land use or land cover (LU/LC) mapping serves as a kind of basic information for land resource study. Detecting and analyzing the quantitative changes along the earth’s surface has become necessary and advantageous because it can result in proper planning, which would ultimately result in improvement in infrastructure development, economic and industrial growth. The LU/LC pattern in Madurai City, Tamil Nadu, has undergone a significant change over the past two decades due to accelerated urbanization. In this study, LU/LC change dynamics were investigated by the combined use of satellite remote sensing and geographical information system. To understand the LU/LC change in Madurai City, different land use categories and their spatial as well as temporal variability have been studied over a period of seven years (1999-2006), by analyzing Landsat images for the years 1999 and 2006 respectively with the help of ArcGIS 9.3 and ERDAS Imagine 9.1 software. This results show that geospatial technology is able to effectively capture the spatio-temporal trend of the landscape patterns associated with urbanization in this region.
This paper qualitatively analyzes the connotation of woodland welfare and the changes of woodland welfare that may be caused by the transfer of the right to use, and interprets the welfare improvement caused by the transfer of the right to use of woodland in the ideal state by using the relevant theories and models of microeconomics. Based on the prospect theory and psychological account theory of behavioral economics, this paper analyzes the reasons why the transfer of forestland use right has not been carried out on a large scale in China.
Copyright © by EnPress Publisher. All rights reserved.