Kampar Regency, as the largest pineapple producer in Riau Province, has yet to provide significant added value for the surrounding SMEs. The limitations in technology and innovation, infrastructure support, and market access have prevented this potential from being optimally utilized. A Technopark can provide the necessary facilities and infrastructure to enhance production efficiency, innovation, and product quality, thus driving local economic growth. The objective of this study is to identify and determine potential locations for the development of a pineapple-based Technopark in Kampar Regency. This study is crucial as a fundamental consideration in selecting the technopark location and assessing the effectiveness and success of the technopark area. The method used in this study is AHP-GIS to analyze relevant parameters in the site selection process for the technopark area. Parameters considered in this study include slope, land use, availability of raw materials, accessibility of roads, access to water resources, proximity to universities, market access, population density, and landfill. The analysis results indicate that the percentage of land highly suitable for the technopark location is 0.78%, covering an area of 8943 hectares. Based on the analysis, it is recommended that potential locations for the development of a pineapple SMEs-based technopark in Kampar Regency are dispersed in Tambang District, encompassing three villages: Rimbo Panjang, Kualu Nenas and Tarai Bangun. The findings of this study align with the spatial planning of Kampar Regency.
The territorial planning approach to allocating productive forces is based on the fact that territories have competitive advantages in producing specific products. However, in agriculture, the advantages principle cannot be used to shape the allocation patterns, due to a variety of intervening factors, such as the climatic and environmental conditions for agricultural production and the quality of land and availability of water. In the case of Russia, one of the most diverse countries in terms of the territorial disparities in agricultural production, this study examines the location and development patterns of the agricultural sector. The study identifies the competitive advantages of territories by comparing localization of agricultural production, production costs, performance, and profitability of agricultural producers, as well as prices of agricultural products in 78 different administrative regions in Russia. The study reveals which regions have more advantageous conditions for over-concentrating energy capacities, labor resources, fixed capital, and investments. However, at a certain point, over-concentrated production forces can lead to a deterioration in the performance of farmers due to an increase in capital intensity. Therefore, countries with significant regional differences in agricultural production should adjust their spatial development patterns according to the parameters of territories’ comparative advantages.
The effective allocation of resources within police patrol departments is crucial for maintaining public safety and operational efficiency. Traditional methods often fail to account for uncertainties and variabilities in police operations, such as fluctuating crime rates and dynamic response requirements. This study introduces a fuzzy multi-state network (FMSN) model to evaluate the reliability of resource allocation in police patrol departments. The model captures the complexities and uncertainties of patrol operations using fuzzy logic, providing a nuanced assessment of system reliability. Virtual data were generated to simulate various patrol scenarios. The model’s performance was analyzed under different configurations and parameter settings. Results show that resource sharing and redundancy significantly enhance system reliability. Sensitivity analysis highlights critical factors affecting reliability, offering valuable insights for optimizing resource management strategies in police organizations. This research provides a robust framework for improving the effectiveness and efficiency of police patrol operations under conditions of uncertainty.
Improving the competitiveness of tourism destinations is crucial for driving local economies and achieving income growth. In light of this evidence, numerous government departments strive to assess specific factors that impact the competitiveness of tourism destinations, enabling them to issue appropriate new tourism policies that promote more effective forms of tourism business. Therefore, the primary objective of this paper is to investigate how various elements such as tourism resources, tourism support, tourism management, location conditions, and tourism demand influence regional competitiveness in the Northern Bay region of Guangxi Province in China. To accomplish this goal, an online survey was conducted to collect data from 420 visitors who had experienced North Gulf Tourism; yielding an impressive response rate of 95 percent. The findings reveal that all aforementioned factors—namely: Tourism resources, tourism support, tourism management, location conditions and tourist demand—significantly impact destination competitiveness. Notably though, it was found that among these factors influencing destination competitiveness; it is primarily determined by effective local-level management (β = 0.345). Following closely behind are tourist demand (β = 0.133) as the second most influential factor affecting destination competitiveness; followed by location conditions (β = 0.116) ranking third; then comes tourist support (β = 0.03) as fourth in line impacting destination competitiveness; finally with least impact being exerted by available tourist resources (β = 0.016). Consequently, highlighting that regional competitiveness within Guangxi’s Northern Bay area predominantly hinges on efficient local-level management practices thus strongly recommending relevant authorities formulate novel work policies aimed at enhancing levels of local-level competitive advantage within the realm of regional touristic offerings.
This study scrutinizes the allocation of financial aid for climate change adaptation from OECD/DAC donors, focusing on its effectiveness in supporting developing countries. With growing concerns over climate risks, the emphasis on green development as a means of adaptation is increasing. The research explores whether climate adaptation finance is efficiently allocated and what factors influence OECD/DAC donor decisions. It examines bilateral official development assistance in the climate sector from 2010 to 2021, incorporating climate vulnerability and adaptation indices from the ND-GAIN Country Index and the IMF Climate Risk Index. A panel double hurdle model is used to analyze the factors influencing the financial allocations of 41,400 samples across 115 recipient countries from 30 donors, distinguishing between the decision to select a country and the determination of the aid amount. The study unveils four critical findings. Firstly, donors weigh a more comprehensive range of factors when deciding on aid amounts than when selecting recipient countries. Secondly, climate vulnerability is significantly relevant in the allocation stage, but climate aid distribution does not consistently match countries with high vulnerability. Thirdly, discerning the impact of socio-economic vulnerabilities on resource allocation, apart from climate vulnerability, is challenging. Lastly, donor countries’ economic and diplomatic interests play a significant role in climate development cooperation. As a policy implication, OECD/DAC donor countries should consider establishing differentiated allocation mechanisms in climate-oriented development cooperation to achieve the objectives of climate-resilient development.
Copyright © by EnPress Publisher. All rights reserved.