Control of key technological and benchmark flows of polymer fluids poses a number of challenges. Some of them are nowadays under active investigation and rather far from complete understanding. This review considers such phenomena as both practically important and governed by fundamental laws of rheology and non-linear fluid mechanics. We observe, shear bands in polymeric and other complex structured fluids (like wormlike micellar solutions or soft glassy materials), birefrigerent strands, peculiarities of stress and pressure losses in fluids moving through complex shape domains. These and other processes involve inhomogeneity, instabilities and transient modes creeping in flow fields. In practical aspect this is of interest in such industrial process as polymer flooding for Enhanced Oil Recovery (EOR), where a flow inhomogeneity affects a polymer solution injectivity and residual oil saturation. The value of viscoelasticity in the polymer flooding is estimated. The observation is concluded by some new results on relation between polymer concentration in solutions and viscoelastic traits of benchmark flows.
This study addresses the rising concerns of technostress experienced by teachers due to the increased reliance on educational technology in both classroom and online settings. Technostress, defined as the adverse psychological effects arising from the use of information communication technologies, has been documented to impact teacher performance and overall well-being. Despite the importance of educational technology in enhancing teaching and learning experiences, many educators report elevated levels of anxiety, stress, and pressures associated with their use of these tools. This study presents practical strategies to help teachers alleviate or prevent technostress while using educational technology. This study used a quantitative approach with a survey conducted among 113 university and schoolteachers. The data analysis included frequency and percentage distribution of categorical variables, Cronbach’s alpha for reliability, chi-square test, and exploratory factor analysis to identify strategies for symptom prevention. The results indicated that while many teachers experienced symptoms of technostress due to several factors, some did not. The study concluded with specific strategies, and many teachers agreed highly. The implications of this study are profound for educational institutions, policymakers, and teacher training programs as they underscore the necessity of providing comprehensive training, support, and resources to help educators manage technostress effectively. By integrating these strategies into professional developmental programs and fostering a supportive teaching environment, schools and universities can promote better mental health for teachers, improving students’ educational outcomes.
Copyright © by EnPress Publisher. All rights reserved.