The successful execution of large-scale infrastructure projects is essential for economic growth and societal development, but these projects are too often beset with financial risks. The main financial risks related to infrastructure projects, including cost overrun, funding uncertainty, currency fluctuation, and regulatory change are examined in this research. The study identifies and assesses the magnitude and frequency of these risks by combining surveys and analysis of financial reports. The findings show that current risk management strategies, including hedging, contingency funds, and public-private partnerships, are often unsuitable to respond to the specific needs of financial uncertainties. The research suggests the need for an all-encompassing financial risk management framework that relies on real-time data analysis and a cocktail of risk assessment tools. Additionally, the development of strategic tailored approaches to address financial risk recovery depends on proactive stakeholder engagement. This research complements the existing literature on risk management in infrastructure projects by highlighting the financial dimensions of risk management and suggesting future research on advanced financial tools and technologies. Ultimately, large-scale infrastructure project sustainability and success contribute to economic stability and societal well-being can only be achieved through effective financial risk management.
This study sought an innovative quality management framework for Chinese Prefabricated Buildings (PB) projects. The framework combines TQM, QSP, Reconstruction Engineering, Six Sigma (6Σ), Quality Cost Management, and Quality Diagnosis Theories. A quantitative assessment of a representative sample of Chinese PB projects and advanced statistical analysis using Structural Equation Modeling supported the framework, indicating an excellent model fit (CFI = 0.92, TLI = 0.90, RMSEA = 0.06). The study significantly advances quality management and industrialized building techniques, but it also emphasizes the necessity for ongoing research, innovation, and information exchange to address the changing problems and opportunities in this dynamic area. In addition, this study’s findings and recommendations can help construction stakeholders improve quality performance, reduce construction workload and cost, minimize defects, boost customer satisfaction, boost productivity and efficiency in PB projects, and boost the Chinese construction industry’s growth and competitiveness.
Public-private partnerships (PPPs) are vital for infrastructure development in developing countries, integrating private efficiency with public oversight. However, PPP models often face risks, particularly in Indonesia’s water sector, due to its unique geographical and regulatory challenges. This study aims to identify and evaluate risk factors specific to drinking water PPP projects in Indonesia. Using a quantitative approach, structured questionnaires were distributed to experts in the sector, and the data was analyzed using a fuzzy evaluation method. Risks were categorized into location, design and construction, financial, operational, revenue, and political. The study emphasizes that effective risk management, including identification, analysis, and mitigation, is essential for project success. It highlights the importance of stakeholder involvement and flexible risk management strategies. Comprehensive and proactive risk management is key to the success of drinking water infrastructure projects. The research suggests that an integrated and collaborative approach among stakeholders can enhance risk management effectiveness. These findings provide valuable insights for policymakers, project managers, investors, and other stakeholders, underscoring the necessity for adaptable regulatory frameworks and robust policy guidelines to improve the sustainability and efficacy of future water-related PPPs.
eGovernment projects are capital intensive and have high probability of failure because of the dynamic and technological laden environment in which they operate. The number of skilled labour and technicalities required are often not available in quantity needed to sustain such project. There is always the need to have in place adequate risk assessment framework to guide the execution and monitoring of eGovernment projects. Several studies have been conducted on the critical success factors relating to risk assessment of eGovernment projects to understand the reasons for the high rate of failure. Therefore, there is need to review these articles and categorize them into different research domain in project risk assessment so as to reveal domain with more or less research and those that need to understand the future research directions in risk assessment for eGovernment projects. Using the positivism paradigm, this study utilized the Systematic Literature Review methodology to collect 147 articles from the following academic databases namely IEEE, Preprints, WorldCat Discovery, ArXiv. Ohio-state University databases, Science Direct, Scopus, ACM, NWU digital library, Usenix, Jise database, Sagepub, MDPI Academia published between 2013 to 2023. Different inclusion and exclusion criteria were applied pruning to 48 articles that were used for the study. The results show the classification of articles in risk assessment for eGovernment projects into those that discusses project analysis, review, framework, maturity and model tools, implementation, and integration, applied methodology and evaluation with the percentage of articles published in each domain with the past 10 years. The various critical success factors that should be considered in the development of a robust risk assessment framework were discussed and future research directions in eGovernment risk assessment were given based on the reviews.
The rapidly growing construction industry often deals with complex and dynamic projects that pose significant safety risks. One of the state-owned companies in Indonesia is engaged in large-scale toll road construction projects with a high incidence of workplace accidents. This study aims to improve safety performance in toll road construction by implementing the Scrum framework. The study uses a System Dynamics approach to model interactions between the Scrum framework, project management, and work safety subsystems. Various scenarios were designed by modifying controlled variables and system structures, including introducing a punishment entity. These scenarios were evaluated based on their impact on reducing incidents and the incident rate over the project period. The results indicate that the combined scenario significantly reduces incidents and incident rates in different conditions. The study also finds a strong relationship between Scrum framework implementation and improved safety performance, demonstrating a reduction in incidents and incident rates by over 50% compared to existing conditions. This research underlines the effectiveness of the Scrum framework in enhancing safety in construction projects.
The application of optimization algorithms is crucial for analyzing oil and gas company portfolio and supporting decision-making. The paper investigates the process of optimizing a portfolio of oil and gas projects under economic uncertainty. The literature review explores the advantages of applying various optimizers to models that consider the mean and semi-standard deviations of stochastic multi-year cash flows and revenues. The methods and results of three different optimization algorithms are discussed: ranking and cutting algorithms, linear (Simplex) and evolutionary (genetic) algorithms. Functions of several key performance indicators were used to test these algorithms. The results confirmed that multi-objective optimization algorithms that examine various key performance indicators are used for efficient optimization in oil and gas companies. This paper proposes a multi-criteria optimization model for investment portfolios of oil and gas projects. The model considers the specific features of these projects and is based on the Markowitz portfolio theory and methodological recommendations for project assessment. An example of its practical application to oil and gas projects is also provided.
Copyright © by EnPress Publisher. All rights reserved.