Dredging and reclamation operations are pivotal aspects of coastal engineering and land development. Within these tasks lie potential hazards for personnel operating dredging machinery and working within reclamation zones. Due to the specialized nature of the work environment, which deviates from conventional workplace settings, the risk of workplace accidents is significantly heightened. The aim of this study is to conduct a comprehensive risk analysis of the safety aspects related to dredging and reclamation activities, with the goal of enhancing safety and minimizing the frequency and severity of potential dangers. This research comprises a thorough risk analysis, integrating meticulous hazard identification from sample projects and literature reviews. It involves risk assessment by gathering insights from experts with direct working experience and aims to assess potential risks. The study focuses on defining effective risk management strategies, exemplified through a case study of a nearshore construction project in Thailand. The study identified numerous high and very high-risk factors in the assessment and analysis of occupational safety in dredging and reclamation work. Consequently, a targeted response was implemented to control and mitigate these risks to an acceptable level. The outcome of this study will provide a significant contribution to the advancement of guidelines and best practices for improving the safety of dredging and reclamation operations.
eGovernment projects are capital intensive and have high probability of failure because of the dynamic and technological laden environment in which they operate. The number of skilled labour and technicalities required are often not available in quantity needed to sustain such project. There is always the need to have in place adequate risk assessment framework to guide the execution and monitoring of eGovernment projects. Several studies have been conducted on the critical success factors relating to risk assessment of eGovernment projects to understand the reasons for the high rate of failure. Therefore, there is need to review these articles and categorize them into different research domain in project risk assessment so as to reveal domain with more or less research and those that need to understand the future research directions in risk assessment for eGovernment projects. Using the positivism paradigm, this study utilized the Systematic Literature Review methodology to collect 147 articles from the following academic databases namely IEEE, Preprints, WorldCat Discovery, ArXiv. Ohio-state University databases, Science Direct, Scopus, ACM, NWU digital library, Usenix, Jise database, Sagepub, MDPI Academia published between 2013 to 2023. Different inclusion and exclusion criteria were applied pruning to 48 articles that were used for the study. The results show the classification of articles in risk assessment for eGovernment projects into those that discusses project analysis, review, framework, maturity and model tools, implementation, and integration, applied methodology and evaluation with the percentage of articles published in each domain with the past 10 years. The various critical success factors that should be considered in the development of a robust risk assessment framework were discussed and future research directions in eGovernment risk assessment were given based on the reviews.
The application of optimization algorithms is crucial for analyzing oil and gas company portfolio and supporting decision-making. The paper investigates the process of optimizing a portfolio of oil and gas projects under economic uncertainty. The literature review explores the advantages of applying various optimizers to models that consider the mean and semi-standard deviations of stochastic multi-year cash flows and revenues. The methods and results of three different optimization algorithms are discussed: ranking and cutting algorithms, linear (Simplex) and evolutionary (genetic) algorithms. Functions of several key performance indicators were used to test these algorithms. The results confirmed that multi-objective optimization algorithms that examine various key performance indicators are used for efficient optimization in oil and gas companies. This paper proposes a multi-criteria optimization model for investment portfolios of oil and gas projects. The model considers the specific features of these projects and is based on the Markowitz portfolio theory and methodological recommendations for project assessment. An example of its practical application to oil and gas projects is also provided.
Projects implemented under life cycle contracts have become increasingly common in recent years to ensure the quality of construction and maintenance of energy infrastructure facilities. A key parameter for energy facility construction projects implemented under life cycle contracts is their duration and deadlines. Therefore, the systematic identification, monitoring, and comprehensive assessment of risks affecting the timing of work on the design and construction is an urgent practical task. The purpose of this work is to study the strength of the influence of various risks on the duration of a project implemented on the terms of a life cycle contract. The use of the expert assessment method allows for identifying the most likely risks for the design and construction phases, as well as determining the ranges of deviations from the baseline indicator. Using the obtained expert evaluations, a model reflecting the range and the most probable duration of the design and construction works under the influence of risk events was built by the Monte-Carlo statistical method. The results obtained allow monitoring and promptly detecting deviations in the actual duration of work from the basic deadlines set in the life cycle contract. This will give an opportunity to accurately respond to emerging risks and build a mutually beneficial relationship between the parties to life cycle contracts.
Copyright © by EnPress Publisher. All rights reserved.