The effective allocation of resources within police patrol departments is crucial for maintaining public safety and operational efficiency. Traditional methods often fail to account for uncertainties and variabilities in police operations, such as fluctuating crime rates and dynamic response requirements. This study introduces a fuzzy multi-state network (FMSN) model to evaluate the reliability of resource allocation in police patrol departments. The model captures the complexities and uncertainties of patrol operations using fuzzy logic, providing a nuanced assessment of system reliability. Virtual data were generated to simulate various patrol scenarios. The model’s performance was analyzed under different configurations and parameter settings. Results show that resource sharing and redundancy significantly enhance system reliability. Sensitivity analysis highlights critical factors affecting reliability, offering valuable insights for optimizing resource management strategies in police organizations. This research provides a robust framework for improving the effectiveness and efficiency of police patrol operations under conditions of uncertainty.
Purpose: This study empirically investigates the effect of big data analytics (BDA) on project success (PS). Additionally, in this study, the investigation includes an examination of how intellectual capital (IC) and (KS) act as mediators in the correlation between BDA and KS. Lastly, a connection between entrepreneurial leadership (EL) and BDA is also explored. Design/Methodology- Using a sample of 422 senior-level employees from the IT sector in Peru. The partial least squares structural equation modeling technique tested the hypothesized relationships. Findings- According to the findings, the relationship between BDA and PS is mediated by structural capital (SC) and relational capital (RC), and BDA demonstrates a positive and noteworthy correlation with PS. Furthermore, EL is positively associated with BDA in a significant manner. Practical implications- The finding of this study reinforce the corporate experience of BDA and suggest how senior levels of the IT sector can promote SC, RC, and EL. Originality/Value- This study is one of the first to consider big data analytics as an important antecedent of project success. With little or no research on the interrelationship of big data analytics, intellectual capital and knowledge sharing the study contributes by investigating the mediating role of intellectual capital and knowledge sharing on the relationship between big data analytics and project success.
Social media interactivity creates consumer’s space of information seeking-sharing where its intensity could produce knowledge, creates new values and changes behavior. The aim of this study is to exploratory investigate the dual role of Generation Z’s information seeking-sharing behavior within green context through the interactive space of social media as a resource for the development of social media marketing strategy. The research employs mixed-method approach of qualitative-explorative data mining, quantitative cross-tabulation Chi-Square test, and integration. Two findings of this research are elaborated. First, consumer’s space of information-seeking leads to the process of green awareness rationalization, i.e., how environment-oriented actions can be rationalized. Second, consumer’s space of information-sharing leads to green social values, i.e., How environment-oriented actions can be socially recognized. The marketing implications of these two findings are business’ efforts to develop green-oriented strategic mindset through space of social media marketing “customer engagement” where the dual role of information seeking-sharing within green context is facilitated.
This study investigates the optimization of ride-sharing services (RSS) on the ride-hailing service (RHS) providers in Bangladesh. This study employed an explanatory sequential mixed method research design- a qualitative study followed by a quantitative one. Qualitative data were collected through focus group discussions and in-depth interviews with twenty (20) riders and drivers in Bangladesh, and quantitative data were collected from 300 respondents consisting of riders and drivers using a convenience sampling technique. Factor analysis and hierarchical cluster analysis were applied to the data analysis. The qualitative analysis reveals several significant factors associated with RSS and RHS, including cost efficiency, fare, fuel consumption, traffic congestion, carbon emissions, environmental pollution, employment opportunities, business growth, and security. The quantitative results indicate that using RSS is associated with more significant benefits than RHS in various aspects, including cost efficiency, fare, fuel consumption, traffic congestion, carbon emissions, environmental pollution, employment opportunities, and expansion of the automobile industry. The findings may assist policymakers in understanding how RSS can yield more incredible economic, environmental, and social benefits than RHS by analyzing fare sharing among passengers, carbon emissions, fuel consumption, and the expansion of the vehicle markets etc. Therefore, the government can formulate distinct policies for RSS holders due to their contributions to economic, social, and environmental concerns. While RHS services are available in many cities in Bangladesh, this study considered only Dhaka and Sylhet cities. Thus, future studies can consider more respondents from other cities for a holistic understanding.
This study investigates the role of property quality in shaping booking intentions within the dynamic landscape of the hospitality sector. A comprehensive approach, integrating qualitative and quantitative methodologies, is employed, utilising Airdna’s dataset spanning from July 2016 to June 2020. Multiple regression models, including interaction terms, are applied to scrutinise the moderating role of property quality. The study unveils unexpected findings, particularly a counterintuitive negative correlation between property quality and booking intentions in Model 7, challenging conventional assumptions. Theoretical implications call for a deeper exploration of contextual nuances and psychological intricacies influencing guest preferences, urging a re-evaluation of established models within hospitality management. On a practical note, the study emphasises the significance of continuous quality improvement and dynamic strategies aligned with evolving consumer expectations. The unexpected correlation prompts a shift towards more context-specific approaches in understanding and managing guest behavior, offering valuable insights for both academia and the ever-evolving landscape of the hospitality industry.
Copyright © by EnPress Publisher. All rights reserved.