The following paper assesses the relationship between electricity consumption, economic growth, environmental pollution, and Information and Communications Technology (ICT) development in Kazakhstan. Using the structural equation method, the study analyzes panel data gathered across various regions of Kazakhstan between 2014 and 2022. The data were sourced from official records of the Bureau of National Statistics of Kazakhstan and include all regions of Kazakhstan. The chosen timeframe includes the period from 2014, which marked a significant drop in oil prices that impacted the overall economic situation in the country, to 2022. The main hypotheses of the study relate to the impact of electricity consumption on economic growth, ICT, and environmental sustainability, as well as ICT’s role in economic development and environmental impact. The results show electricity consumption’s positive effect on economic growth and ICT development while also revealing an increase in pollutant emissions (emissions of liquid and gaseous pollutants) with economic growth and electricity consumption. The development of ICT in Kazakhstan has been revealed to not have a direct effect on reducing pollutant emissions into the environment, raising important questions about how technology can be leveraged to mitigate environmental impact, whether current technological advancements are sufficient to address environmental challenges, and what specific measures are needed to enhance the environmental benefits of ICT. There is a clear necessity to integrate sustainable practices and technologies to achieve balanced development. These results offer important insights into the relationships among electricity consumption, technology, economic development, and environmental issues. They underscore the complexity and multidimensionality of these interactions and suggest directions for future research, especially in the context of finding sustainable solutions for balanced development.
This study explores the impact of technological innovations on audit transparency, objectivity, and assurance. The study employs a systematic literature review methodology, analyzing a wide range of scholarly articles, research papers, and reports to synthesize the findings. The methodology involved identifying keywords, conducting comprehensive searches in academic databases, and evaluating the selected literature. The study identifies key themes on how technological innovations impact audit practices through analysis of the literature. The impacts of technology include enhanced audit transparency through improved documentation capabilities, real-time reporting, and increased stakeholder engagement. Technological advancements bolster audit objectivity by automating repetitive tasks, facilitating advanced data analysis, and promoting standardized audit procedures. However, the analysis highlighted challenges associated with the use of technology in audits including complex technology implementation and the potential for biases. This research study contributes to the existing body of knowledge by consolidating relevant research and insights on the subject matter.
This study proposes a fuzzy analytic hierarchy process (FAHP) method to support strategic decision-makers in choosing a project management research agenda. The analytical hierarchy process (AHP) model is the basic tool used in this study. It is a mathematical tool for evaluating decisions with multiple alternatives by decomposing them into successive levels according to their degree of importance. The Sustainable Development Goals (SDG) oriented theme of project management was chosen from among four themes that emerged from a strategic monitoring study. The FAHP method is an effective decision-making tool for multiple aspects of project management. It eliminates subjectivity and produces decisions based on consistent judgment.
From the perspective of the corporate life cycle, this study investigates the transmission mechanism of ‘technological innovation-financing constraints-carbon emission reduction’ in energy companies using panel data and mediating models, focusing on listed energy companies from 2014 to 2020. It explores the stage characteristics of this mechanism during different life cycle phases and conducts heterogeneity tests across industries and regions. The results reveal that technological innovation positively influences carbon emission reduction in energy enterprises, demonstrating significant life cycle stage characteristics, specifically more pronounced in mature companies than in growing or declining companies. Financing constraints play a mediating role between technological innovation and carbon reduction, but this is only effective during the growth and maturity stages. Further research shows that the impact of technological innovation on carbon emission reduction and the mediating role of financing constraints exhibit heterogeneity across different stages of the life cycle, industries, and regions. The conclusions of this paper provide references for energy companies in planning rational emission reduction strategies and for government departments in policy-making.
Copyright © by EnPress Publisher. All rights reserved.