The telecommunications services market faces essential challenges in an increasingly flexible and customer-adaptable environment. Research has highlighted that the monopolization of the spectrum by one operator reduces competition and negatively impacts users and the general dynamics of the sector. This article aims to present a proposal to predict the number of users, the level of traffic, and the operators’ income in the telecommunications market using artificial intelligence. Deep Learning (DL) is implemented through a Long-Short Term Memory (LSTM) as a prediction technique. The database used corresponds to the users, revenues, and traffic of 15 network operators obtained from the Communications Regulation Commission of the Republic of Colombia. The ability of LSTMs to handle temporal sequences, long-term dependencies, adaptability to changes, and complex data management makes them an excellent strategy for predicting and forecasting the telecom market. Various works involve LSTM and telecommunications. However, many questions remain in prediction. Various strategies can be proposed, and continued research should focus on providing cognitive engines to address further challenges. MATLAB is used for the design and subsequent implementation. The low Root Mean Squared Error (RMSE) values and the acceptable levels of Mean Absolute Percentage Error (MAPE), especially in an environment characterized by high variability in the number of users, support the conclusion that the implemented model exhibits excellent performance in terms of precision in the prediction process in both open-loop and closed-loop.
This study investigated the relationship between telecommunications development, trade openness and economic growth in South Africa. It determined explicitly if telecommunications development and trade openness directly impact economic growth or whether telecommunications strengthen or weaken the link between trade openness and economic growth using the ARDL bounds test methodology. The findings reveal that both telecommunications development indicators and trade openness significantly and positively impact South Africa’s GDP in the short and long terms. The study also found that control variables like internet usage and gross fixed capital formation significantly and positively influence GDP. Conversely, inflation was found to consistently affect GDP negatively and significantly. The findings from the ARDL cointegration analysis affirm a long-run economic relationship between the independent variables and GDP. The study also established that telecommunications development slightly distorts trade in the foreign trade-GDP nexus in South Africa. Despite this, the negative interaction effect is not substantial enough to overshadow the positive impact of trade openness on economic growth. From a policy perspective, the study recommends that South African policymakers prioritise enhancing local goods’ competitiveness in global markets and reducing trade barriers. It also advocates for improving the accessibility and affordability of telecommunications technologies to foster economic development.
Copyright © by EnPress Publisher. All rights reserved.