The existing studies on the association between the built environment and health mainly concentrates on urban areas, while rural communities in China have a huge demand for a healthy built environment, and research in this area remains insufficient. There is a lack of research on the health impact of the built environment in rural communities in China, where there is a significant demand for advancements in the healthy built environment. Exploring the Influence of built environment satisfaction on self-rated health outcomes in New-type village communities has positive significance for advancing research on healthy village community. This paper selects four new-type village communities as typical cases, which are located in the far suburbs of Shanghai, China. A questionnaire survey was conducted on individual villagers, and 223 valid questionnaire samples were obtained. A PLS-SEM model was developed using survey data to examine how built environment satisfaction influences dwellers’ self-rated health while taking into account the mediating function of the perceived social environment. Moreover, multi-group analysis was performed based on age. The results show that built environment satisfaction indirectly influences residents self-rated health through its impact on perceived social environment. The research also discovered that the relationship between built environment satisfaction, social environment satisfaction and self-rated health is not influenced by age as a moderating factor. The research offers new insights for the planning and design of new-type village community from a health perspective.
Due to the short cost-effective heat transportation distance, the existing geothermal heating technologies cannot be used to develop deep hydrothermal-type geothermal fields situated far away from urban areas. To solve the problem, a new multi-energy source coupling a low-temperature sustainable central heating system with a multifunctional relay energy station is put forward. As for the proposed central heating system, a compression heat pump integrated with a heat exchanger in the heating substation and a gas-fired water/lithium bromide single-effect absorption heat pump in the multifunctional relay energy station are used to lower the return temperature of the primary network step by step. The proposed central heating system is analyzed using thermodynamics and economics, and matching relationships between the design temperature of the return water and the main line length of the primary network are discussed. The studied results indicate that, as for the proposed central heating system, the cost-effective main line length of the primary network can approach 33.8 km, and the optimal design return temperature of the primary network is 23 ℃. Besides, the annual coefficient of performance and annual energy efficiency of the proposed central heating system are about 3.01 and 42.7%, respectively.
Global warming is a thermodynamic problem. When excess heat is added to the climate system, the land warms more quickly than the oceans due to the land’s reduced heat capacity. The oceans have a greater heat capacity because of their higher specific heat and the heat mixing in the upper layer of the ocean. Thermodynamic Geoengineering (TG) is a global cooling method that, when deployed at scale, would generate 1.6 times the world’s current supply of primary energy and remove carbon dioxide (CO2) from the atmosphere. The cooling would mirror the ostensible 2008–2013 global warming hiatus. At scale, 31,000 1-gigawatt (GW) ocean thermal energy conversion (OTEC) plants are estimated to be able to: a) displace about 0.8 watts per square meter (W/m2) of average global surface heat from the surface of the ocean to deep water that could be recycled in 226-year cycles, b) produce 31 terawatts (TW) (relative to 2019 global use of 19.2 TW); c) absorb about 4.3 Gt CO2 per year from the atmosphere by cooling the surface. The estimated cost of these plants is $2.1 trillion per year, or 30 years to ramp up to 31,000 plants, which are replaced as needed thereafter. For example, the cost of world oil consumption in 2019 was $2.3 trillion for 11.6 TW. The cost of the energy generated is estimated at $0.008/KWh.
Brunei Darussalam is a small Sultanate country with diverse forest cover. One of them would be Mangrove Forest. As it has four main administrative districts, Temburong would be the chosen case study area. The methods of collecting data for this article are by collecting secondary data from official websites and the map in this article (Figure 1) are showing the forest cover in Brunei Darussalam as of 2020. The aim of this article is to explain the mangrove forest especially at the Temburong District. As for the objectives, it would to be able to show the different types of forests in Temburong, hoping in ability to explain the different subtypes of mangroves forest and to explain in general the green jewel of Brunei Darussalam. Temburong has become the second highest tree coverage in Brunei Darussalam of 124 kha as of 2010, while the mangrove forest covering about 66% of total mangrove forest of 12,164 km2 out of 18,418 hectares. Mangrove forest has seven subtypes: Bakau species, Nyireh bunga, Linggadai, Nipah, Nipah-Dungun, Pedada and Nibong. Selirong Forest Reserve and Labu Forest Reserve are the two-mangrove forest reserves in Brunei Darussalam at Temburong District. Forest cover in Brunei Darussalam are 3800 hectares as of 2020 and has lost its tree coverage of 1.17 kha and one of the reasons would be forest fire and the tree cover loss due to fire is around 197 ha and the district that has lost its tree cover mostly was at Belait District of total 13.4 kha between the year 2001 until 2022.
This study investigates the interaction between audit firms and key audit matters (KAMs) to measure their impact on financial reporting quality in Palestine, thereby enriching the discourse on financial reporting. A descriptive statistical method was used to analyze the audit reports of listed Palestinian firms from 2018 to 2022. A methodology that scrutinizes the clarity and informativeness of KAMs across different audit firms and KAM types, the research investigates how audit procedures and risk assessments contribute to the comprehensibility of KAM disclosures. The findings highlight a significant disparity in the readability of KAMs attributable to audit firm selection, with the non-Big Four firms exhibiting distinct approaches. This understanding, gathered through multivariate analysis, offers valuable contributions to the ongoing discourse on financial reporting quality, emphasizing the essential role of audit firms in shaping the effectiveness of audit reports and KAM disclosures.
Considering the need to adopt more sustainable agricultural systems, it is important that sweet potato breeding programs seek to increase not only root productivity, but also the productivity and quality of branches for silage production. The objective was to evaluate the genetic divergence and the importance of traits associated with the production and quality of branch silage in sweet potato genotypes. The experiment was conducted on the JK Campus of the Federal University of Vales do Jequitinhonha and Mucuri Valleys in a randomized block design with 12 treatments and four repetitions. Twelve characteristics of branches and silage were evaluated. There was genetic variability between the genotypes, making it possible to select parents divergent for future breeding programs for silage production. The genotypes BD-54 and BD-31TO were the most divergent in relation to the others, being indicated its use in crossbreeding aiming the improvement of the culture for silage, once the high performance per se of all genotypes evaluated has already been verified in previous works. The characteristics Na, TDN and NDF were those that most contributed to the divergence.
Copyright © by EnPress Publisher. All rights reserved.