Map is the basic language of geography and an indispensable tool for spatial analysis. But for a long time, maps have been regarded as an objective and neutral scientific achievement. Inspired by critical geography, critical cartography/GIS came into being with the goal of clarifying the discourse embedded in cartographic practice. Power relationship challenges the untested assumption in map representation that is taken for granted. After more than 40 years of debate and running in, this research field has initially shown an outline, and critical cartography/GIS has roughly formed two research directions: the deconstruction path mainly starts from the identity of cartography subject and the process of map knowledge production, and analyzes the inseparable relationship between cartography and national governance and its internal power mechanism respectively; the construction path mainly relies on cooperative mapping and anti-mapping to realize the reproduction of map data. Domestic critical cartography/GIS research has just started, and it is necessary to continue to absorb the achievements of critical geography and carry out research in different historical periods. The deconstruction research of different types of maps also needs to strengthen the in-depth bridging between the construction path and the deconstruction path, and to be more open to the public. Impartial map application research, and actively apply the research results to social practice.
Based on the collective forest with common use rights, the social-ecological system analysis framework and autonomous governance theory proposed by Elinor Ostrom are introduced in the forest eco-economic system to analyze the interaction logic among the first-level subsystems and the secondary variables of the forest eco-economic system and the variables related to the autonomous governance of the system to explore the synergistic mechanisms affecting the forest eco-economic system. The results show that: in the case of information asymmetry, collective actions of governmental and non-governmental organizations will aggravate the dilemma of forest eco-economic synergistic development; actors extract forest resource units from the forest resource system to achieve economic benefits; and renewable resources of forest ecosystems can be sustained in the long term when the average extraction rate of humans from forest ecosystems does not exceed the average replenishment rate.
The idea of a smart city has evolved in recent years from limiting the city’s physical growth to a comprehensive idea that includes physical, social, information, and knowledge infrastructure. As of right now, many studies indicate the potential advantages of smart cities in the fields of education, transportation, and entertainment to achieve more sustainability, efficiency, optimization, collaboration, and creativity. So, it is necessary to survey some technical knowledge and technology to establish the smart city and digitize its services. Traffic and transportation management, together with other subsystems, is one of the key components of creating a smart city. We specify this research by exploring digital twin (DT) technologies and 3D model information in the context of traffic management as well as the need to acquire them in the modern world. Despite the abundance of research in this field, the majority of them concentrate on the technical aspects of its design in diverse sectors. More details are required on the application of DTs in the creation of intelligent transportation systems. Results from the literature indicate that implementing the Internet of Things (IoT) to the scope of traffic addresses the traffic management issues in densely populated cities and somewhat affects the air pollution reduction caused by transportation systems. Leading countries are moving towards integrated systems and platforms using Building Information Modelling (BIM), IoT, and Spatial Data Infrastructure (SDI) to make cities smarter. There has been limited research on the application of digital twin technology in traffic control. One reason for this could be the complexity of the traffic system, which involves multiple variables and interactions between different components. Developing an accurate digital twin model for traffic control would require a significant amount of data collection and analysis, as well as advanced modeling techniques to account for the dynamic nature of traffic flow. We explore the requirements for the implementation of the digital twin in the traffic control industry and a proper architecture based on 6 main layers is investigated for the deployment of this system. In addition, an emphasis on the particular function of DT in simulating high traffic flow, keeping track of accidents, and choosing the optimal path for vehicles has been reviewed. Furthermore, incorporating user-generated content and volunteered geographic information (VGI), considering the idea of the human as a sensor, together with IoT can be a future direction to provide a more accurate and up-to-date representation of the physical environment, especially for traffic control, according to the literature review. The results show there are some limitations in digital twins for traffic control. The current digital twins are only a 3D representation of the real world. The difficulty of synchronizing real and virtual world information is another challenge. Eventually, in order to employ this technology as effectively as feasible in urban management, the researchers must address these drawbacks.
Although dykes are a predominant and widely distributed phenomenon in S-Algeria, N-Mali and N-Niger, a systematic, standardized inventory of dykes covering these areas has not been published so far. Remote sensing and geo information system (GIS) tools offer an opportunity for such an inventory. This inventory is not only of interest for the mining industry as many dykes are related to mineral occurrence of economic value, but also for hydrogeologic investigations (dykes can form barriers for groundwater flow). Surface-near dykes, major fault zones, volcanic and structural features were digitized based on Landsat 8 and 9, Sentinel 2, Sentinel 1 and ALOS PALSAR data. High resolution images of World Imagery files/ESRI and Bing Maps Aerial/Microsoft were included into the evaluations. More than 14,000 dykes were digitized and analyzed. The evaluations of satellite images allow a geomorphologic differentiation of types of dykes and the description of their characteristics such as dyke swarms or ring dykes. Dykes are tracing zones of weakness like faults and zones with higher geomechanically strain. Dyke density calculations were carried out in ArcGIS to support the detection of dyke concentrations as stress indicator. Thus, when occurring concentrated, they might indicate stressed areas where further magmatic and earthquake activity might potentially happen in future.
The study focused on investigating the effects of varying levels of HA (HA1 = 0, HA2 = 25, HA3 = 50, HA4 = 75, and HA5 = 100) on Red Dragon, Red Prince, and Red Meat varieties of red radish. This analysis aimed to unravel the relationship between different levels of HA and their impact on the growth and productivity of red radish genotypes. The findings revealed that the Red Prince genotype attained the utmost plant height of 24.00 cm, an average of 7.50 leaves per plant, a leaf area of 23.11 cm2, a canopy cover of 26.76%, a leaf chlorophyll content of 54.60%, a leaf fresh weight of 41.16 g, a leaf dry weight of 8.20 g, a root length measuring 9.73 cm, a root diameter of 3.19 mm, a root fresh weight of 27.60 g, a root dry weight of 6.75 g, and a remarkable total yield of 17.93 tons per hectare. The implications of this study are poised to benefit farmers within the Dera Ismail Khan Region, specifically in the plain areas of Pakistan, by promoting the cultivation of the Red Prince variety.
In light of swift urbanization and the lack of precise land use maps in urban regions, comprehending land use patterns becomes vital for efficient planning and promoting sustainable development. The objective of this study is to assess the land use pattern in order to catalyze sustainable township development in the study area. The procedure adopted involved acquiring the cadastral layout plan of the study area, scanning, and digitizing it. Additionally, satellite imagery of the area was obtained, and both the cadastral plan and satellite imagery were geo-referenced and digitized using ArcGIS 9.2 software. These processes resulted in reasonable accuracy, with a root mean square (RMS) error of 0.002 inches, surpassing the standard of 0.004 inches. The digitized cadastral plan and satellite imagery were overlaid to produce a layered digital map of the area. A social survey of the area was conducted to identify the specific use of individual plots. Furthermore, a relational database system was created in ArcCatalog to facilitate data management and querying. The research findings demonstrated the approach's effectiveness in enabling queries for the use of any particular plot, making it adaptable to a wide range of inquiries. Notably, the study revealed the diverse purposes for which different plots were utilized, including residential, commercial, educational, and lodging. An essential aspect of land use mapping is identifying areas prone to risks and hazards, such as rising sea levels, flooding, drought, and fire. The research contributes to sustainable township development by pinpointing these vulnerable zones and providing valuable insights for urban planning and risk mitigation strategies. This is a valuable resource for urban planners, policymakers, and stakeholders, enabling them to make informed decisions to optimize land use and promote sustainable development in the study area.
Copyright © by EnPress Publisher. All rights reserved.