The importance of improving industrial transformation processes for more efficient ones is part of the current challenges. Specifically, the development of more efficient processes in the production of biofuels, where the reaction and separation processes can be intensified, is of great interest to reduce the energy consumption associated with the process. In the case of Biodiesel, the process is defined by a chemical reaction and by the components associated to the process, where the thermochemical study seeks to develop calculations for the subsequent understanding of the reaction and purification process. Thus, the analysis of the mixture of the components using the process simulator Aspen Plus V9® unravels the thermochemical study. The UNIFAC-DMD thermodynamic method was used to estimate the binary equilibrium parameters of the reagents using the simulator. The analyzed aspects present the behavior of the components in different temperature conditions, the azeotropic behavior and the determined thermochemical conditions.
Apple farming is a new production venture across the North Shewa Zone. Its production, harvest, postharvest handling, and marketing status are not well known. This study was conducted to assess the above-lined situations across the district. Four representative locations, Asabahir, Tsigereda, Tengego, and Godnamamas were selected based on their apple production status. Then, a total of 88 respondents were randomly selected and interviewed by a structured questionnaire. The data were analyzed by descriptive statistics of percentage, standard deviation, and chi-square tests. A larger percentage of farmers are male (82.9%), in their active production age (41.7%), and produce apples in their backyard (85.25%). The agronomic management of fertilization, pruning, training, and plant spacing deviate from the recommended practices of apple farming. Whereas varietal distribution, irrigation, and post-harvest treatments are better practiced. Loss of fruits by fruit drops and discrimination on the market due to small fruit size are serious problems across the locations. Regarding apple farming, the farmers think of it as a productive venture and got a better price per kg and single fruit sale. They sell mainly in local collectors (60.2%) and nearby cities. As for institutional support, the farmers got apple seedlings, training, and capacity buildings by Agriculture Offices and NGOs, even if the farmers are still in higher need of better support. Therefore, it can be concluded that if not outwaited by poor tree management, destructive product transportation, and higher loss of fruits from trees and in the market, the attitude of the farmers can be capitalized in better production of apples.
UAVs, also known as unmanned aerial vehicles, have emerged as an efficient and flexible system for offering a rapid and cost-effective solution. In recent years, large-scale mapping using UAV photogrammetry has gained significant popularity and has been widely adopted in academia as well as the private sector. This study aims to investigate the technical aspects of this field, provide insights into the procedural steps involved, and present a case study conducted in Cesme, Izmir. The findings derived from the case study are thoroughly discussed, and the potential applications of UAV photogrammetry in large-scale mapping are examined. The study area is divided into 12 blocks. The flight plans and the distribution of ground control point (GCP) locations were determined based on these blocks. As a result of the data processing procedure, average GCP positional errors ranging from 1 to 18 cm have been obtained for the blocks.
[Objective]In order to explore the sustainable food security level in the Yangtze River Economic Belt, ensure food security and sustainable development of agricultural modernization, it is necessary to establish a scientific food security evaluation system to safeguard local food security.[Methods]This paper takes the food system of the Yangtze River Economic Belt in China as the research object, based on the food security research results at home and abroad, based on sustainable development thinking, combined with a new perspective of dynamic equilibrium research: Beginning with food normalcy, a comprehensive analysis of food production, food economy, social development, ecological security, and technical support for sustainable development is presented using the entropy-weighted TOPSIS model to build a food security evaluation system for sustainable development. [Conclusion]After systematic analysis, it is concluded that (1) the average value of food security score of the Yangtze River Economic Belt from 2008 to 2021 is 0.429, and the overall food in the Yangtze River Economic Belt is in general security level (0.400 ≤ Q1 ≤ 0.600), and the overall situation of food security is not optimistic, (2) from the segmentation of the Yangtze River Economic Belt, the high and low level of food security are divided into sections: midstream > downstream > upstream, and each province and city is slowly rising to different degrees. In this way, we propose general countermeasures to ensure local food security from the perspective of sustainable development.
Currently, there is a significant gap between the training objectives and the actual situation of electromechanical talents in higher vocational colleges. Many teachers in electromechanical departments do not meet the required qualifications and are unable to adapt to the developments of the new era. The talent training mode is insufficiently comprehensive, and the criteria for talent assessment are not unified. In response to these issues, it is necessary to promptly change the mindset, innovate educational ideas, focus on the present while planning for the future, clarify training objectives, adopt a dual education model that integrates production and education, strengthen the faculty, utilize their potential, and improve the overall educational quality to provide guarantees for talent development.
Tomato is one of the major solanaceous vegetables, which has a unique place in the global vegetable market. Instead of being a high-value crop, there is still a need to do improvement in its potential against various biotic and abiotic stressors that adequately demolish its real yield. Alternaria solani (causing early blight disease) is designated as one of the fatal organisms that may reduce tomato crop yield by up to 80%. There were lots of methods, viz., chemical, cultural and biological suggested to overcome it. However, chemical strategies are much in vogue, but they have several negative consequences for human health and the ecosystem. Enlightening this issue, the efficacy of various treatments, viz., chemical fungicides (Amistar Top®, Nativo®, and Contaf®), biochar and fungal bioagent (Trichoderma viride) was assessed under both in vivo and in vitro conditions. Induced resistance is mediated by several regulating pathways, like salicylic acid and jasmonic acid. These mediating pathways manipulate different physiological processes like growth and development, stress tolerance, and defence mechanisms of the plant. The assessment of results revealed that among all treatments biochar at 3.25% by weight consistently displayed remarkable effectiveness against the early blight infection by triggering resistance and improving the overall performance of tomato plants. This result is attributed to improved soil health, fastening mineralization as well as absorption processes, and boosting the plant’s immunity with the use of a higher concentration of biochar. Hence, it could be recommended for the overall improvement of tomato crop and its sustainability.
Copyright © by EnPress Publisher. All rights reserved.