This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
The world has changed to a massive degree in the past thousands of years. Most of the time, the amount of carbon dioxide in the atmosphere remains constant. In the late 18th century, according to the sources of CDIAC and NOOA, the level of carbon dioxide began to rise, and then in the 20th century, it went through the roof, reaching levels that had not been seen in nature for millions of years. The increase in carbon in the atmosphere is the major contributing factor to climate change. The key to reversing the damage is restoring the earth’s delicate, balanced carbon cycle. As carbon cycle depicts the way carbon moves around the earth. It consists of sources that emit the carbon component into the atmosphere. The biological side of the carbon cycle is well balanced due to respiration, where carbon dioxide is released into the atmosphere, then plants, bacteria, and algae take carbon dioxide out of the atmosphere during photosynthesis and the process they use to generate chemical energy. On the other hand, oceans are the best sources and sinks; carbon dioxide is endlessly being absorbed into the ocean and released from the oceans almost exactly at the same rate, which is rapidly influencing the carbon cycle. Similarity is a methodology that has many applications in the real world. The current research article is destined to study how statistics of carbon emission metrics are alike and belong to one cluster. In the current study, the research is destined to derive a similarity analysis of several countries’ carbon emission metrics that are alike and often fall in the range of [0, 1]. And deriving the proximity of the carbon emission metrics leading to similarity or dissimilarity. In the current context of data matrices of numerical data, an Euclidian measure of distance between two data elements will yield a degree of similarity. The current research article is destined to study the similarity analysis of carbon emission metrics through fuzzy entropy clustering.
This study seeks to explore the information value of free cash flow (FCF) on corporate sustainability and investigate the moderating effects of board gender diversity and firm size on the association between FCF and corporate sustainability of Thai listed companies. The dataset consists of companies listed on the Stock Exchange of Thailand (SET) in 2022. Multivariate regression analysis is executed in this study. Subsequently, PROCESS macro served to evaluate the proposed hypotheses. This study found that FCF has a significant positive relationship with corporate sustainability. As well, board gender diversity and firm size both moderate the relationship between FCF and corporate sustainability, such that the positive effect of FCF on corporate sustainability is stronger when the proportion of female boards diminishes, while firm size is smaller. However, when firms have a larger proportion of females on the boards of directors for all levels of firm size, free cash flow indicates that there is no statistically significant effect on corporate sustainability. This study contributes to FCF and sustainability literature by understanding the extent of corporate sustainability.
Lack of knowledge, attitude, and behavior in managing leftover foods in households impacts the natural ecosystem and food chain, particularly in developing countries. This research aims to analyze appropriate methods for reducing and processing food waste produced in household areas. This research method uses qualitative research with operational research methods carried out for 6 months on 25 housewives in Pondok Labu Village in South Jakarta, Indonesia. The research was carried out in 3 stages, the first stage before the intervention, the second stage providing the intervention, and the third stage after the intervention. Results showed that before the intervention, on average each respondent produced 351 g of food waste each day. This amount decreased to 8.43 g/day after respondents participated in socialization to reduce food waste and training to manage food waste. The concluded that a combination of education and training improves knowledge, attitude, and behavior in household food waste management and helps moderate food waste generation.
Money laundering has become a vital issue all over the world especially in the emerging economy over the last two decades. Till now, the developing and emerging countries face challenges about the remedies and inceptions of anti-money laundering issues. The objective of the study is to provide a thorough picture of the diversified movements of academic research on money laundering and anti-money laundering activities all over the world. This study aims at exploring the contemporary issues in Anti-money laundering based on the academic points of view. Further, the study is explored to render a portrayal of anti-money laundering activities from an emergency country context. A review of publicly available reports, published documents, daily newspapers, case studies, and previous academic research comprised the main sources of data for the study. It is found that the contemporary money laundering and anti-money laundering academic research might be classified into four broad categories. An emerging country like Bangladesh has taken little initiative to inductee anti-money laundering initiatives. It implies that for the successful implementation of anti-money laundering activities, good governance along with a congenial regulatory framework is a prerequisite in an emerging country context. In addition, the machine learning may enhance the quality of money laundering detections in Bangladesh.
Copyright © by EnPress Publisher. All rights reserved.