In November 2018, the sample plot survey method was used to analyze the population characteristics of Lithocarpus polystachyus in the natural secondary forest with different disturbance intensity in Jianning, Fujian Province, and compile its population static life table. The results showed that the number of individuals in the population was small, but it was clustered. With the increase of interference intensity, the first and second age seedlings and young trees decreased. The population types affected by human disturbance are all lacking level V trees, and the population type belongs to primary population (N1); The undisturbed population lacks level I and II seedlings and young trees, but there are level V trees, and the population type belongs to medium decline population (S2). In general, all populations of L. polystachyus are unstable and belong to the transitional type. In the static life table, the mortality of level I and II seedlings and young trees is high, the survival rate has a small peak in level III and IV, and then the survival rate decreases rapidly, and the average life expectation of level II is the highest. It shows that artificial conservation measures and appropriate space re-lease are needed to maintain the stability of the population.
We have studied the effect of the series resistance on the heating of the cathode, which is based on carbon nanotubes and serves to realize the field emission of electrons into the vacuum. The experiment was performed with the single multi-walled carbon nanotube (MCNT) that was separated from the array grown by CVD method with thin-film Ni-Ti catalyst (nickel 4 nm/Ti 10 nm). The heating of the cathode leads to the appearance of a current of the thermionic emission. The experimental voltage current characteristic exhibited the negative resistance region caused by thermal field emission. This current increases strongly with increasing voltage and contributes to the degradation of the cold emitter. The calculation of the temperature of the end of the cathode is made taking into account the effect of the phenomenon that warms up and cools the cathode. We have developed a method for processing of the emission volt-ampere characteristics of a cathode, which relies on a numerical calculation of the field emission current and the comparison of these calculations with experiments. The model of the volt-ampere characteristic takes into account the CNT’s geometry, properties, its contact with the catalyst, heating and simultaneous implementation of the thermionic and field emission. The calculation made it possible to determine a number of important parameters, including the voltage and current of the beginning of thermionic emission, the temperature distribution along the cathode and the resistance of the nanotube. The phenomenon of thermionic emission from CNTs was investigated experimentally and theoretically. The conditions of this type emission occurrence were defined. The results of the study could form the basis of theory of CNT emitter’s degradation.
The objective of the present study is to observe the surface morphology, structure and elemental composition of the ash particles produced from some thermal power stations of India using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA). This information is useful to better understand the ash particles before deciding its utility in varied areas.
This work investigates epoxy composites reinforced by randomly oriented, short glass fibres and silica microparticles. A full-factorial experiment evaluates the effects of glass fibre mass fraction (15 wt% and 20 wt%) and length (5 mm and 10 mm), and the mass fraction of silica microparticles (5 wt% and 10 wt%) on the apparent density and porosity, as well as the compressive and tensile strength and modulus of the hybrid composites. Hybrid epoxy composites present significantly higher tensile strength (9%) and modulus (57%), as well as compressive strength (up to 15%) relative to pure epoxy.
Magnetic graphene oxide nanocomposites (M-GO) were successfully synthesized by partial reduction co-precipitation method and used for removal of Sr(II) and Cs(I) ions from aqueous solutions. The structures and properties of the M-GO was investigated by X-ray diffraction, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer (VSM) and N2-BET measurements. It is found that M-GO has 2.103 mg/g and 142.070 mg/g adsorption capacities for Sr(II) and Cs(I) ions, respectively. The adsorption isotherm matches well with the Freundlich for Sr(II) and Dubinin–Radushkevich model for Cs(I) and kinetic analysis suggests that the adsorption process is pseudo-second-ordered.
Copyright © by EnPress Publisher. All rights reserved.