Cyber-physical Systems (CPS) have revolutionized urban transportation worldwide, but their implementation in developing countries faces significant challenges, including infrastructure modernization, resource constraints, and varying internet accessibility. This paper proposes a methodological framework for optimizing the implementation of Cyber-Physical Urban Mobility Systems (CPUMS) tailored to improve the quality of life in developing countries. Central to this framework is the Dependency Structure Matrix (DSM) approach, augmented with advanced artificial intelligence techniques. The DSM facilitates the visualization and integration of CPUMS components, while statistical and multivariate analysis tool such as Principal Component Analysis (PCA) and artificial intelligence methods such as K-means clustering enhance complex system the analysis and optimization of complex system decisions. These techniques enable engineers and urban planners to design modular and integrated CPUMS components that are crucial for efficient, and sustainable urban mobility solutions. The interdisciplinary approach addresses local challenges and streamlines the design process, fostering economic development and technological innovation. Using DSM and advanced artificial intelligence, this research aims to optimize CPS-based urban mobility solutions, by identifying critical outliers for targeted management and system optimization.
The COVID-19 pandemic has significantly restricted household resilience, particularly in developing countries. The study investigates the correlation between livelihood capital and household resilience amid uncertainties due to the COVID-19 pandemic, specifically in Bekasi Regency, West Java Province, Indonesia. Livelihood capital encompasses social, human, natural, physical, and financial, which are crucial in shaping household resilience. This study used the SEM-PLS method and utilized a survey of 120 respondents (household heads) from four villages in two districts (Muaragembong and South Tambun) in Bekasi Regency to identify critical factors that either enhance or impede rural household resilience during and after the pandemic. Findings reveal that households possessing human capital, financial capital, and empowerment are more adept at navigating socioeconomic difficulties during and after the pandemic. However, this research stated that trust and social networks enhance household resilience during the pandemic, whereas social norms are crucial for rebuilding household resilience in the post-pandemic phase. The finding revealed that social cohesion adversely affected household resilience during and after the pandemic, while trust diminished household resilience in the post-pandemic COVID-19 phase. These findings offer insight to policymakers, scholars, and other stakeholders aiming to foster household resilience during and in recovery efforts after the pandemic.
Objective: As the scale and importance of official development assistance (ODA) continue to grow, the need to enhance the effectiveness of ODA policies has become more critical than ever before. In this context, it is essential to systematically classify recipient countries and establish tailored ODA policies based on these classifications. The objective of this study is to identify an appropriate methodology for categorizing developing countries using specific criteria, and to apply it to actual data, providing valuable insights for donor countries in formulating future ODA policies. Design/Methodology/Approach: The data used in this study are the basic statistics on the Sustainable Development Goals (SDGs) published annually in the SDGs Report. The analytical method employed is decision tree analysis. Results: The results indicate that the 167 countries analyzed were classified into 10 distinct nodes. The study further limited the scope to the five nodes representing the most disadvantaged developing countries and suggested future directions for aid policies for each of these nodes.
This research aims to identify the development of research theme trends that were carried out from 1999 to 2024. Thus, the study’s results can provide recommendations regarding research themes that can be developed to meet theoretical and practical needs. Researchers use bibliometric analysis to obtain the appropriate analysis. This analysis method can be developed to support the dynamic development of public health science with settings and researchers from developing countries, both through quantitative and qualitative interpretation. The analysis results show that over 25 years, public health science, from the perspective of researchers and developing countries, has experienced dynamic development. This change was driven by the emergence of various issues in society itself. For example, the 1999–2009 shows that lifestyle changes have resulted in multiple diseases. In the following period, the concept of sustainability emerged, which encouraged awareness of sustainable development and resource scarcity that would affect public health quality. As for the 2020–2024 period, the emergence of Covid 19 changed the previous research paradigm.
Copyright © by EnPress Publisher. All rights reserved.