The danger of riverbed processes is considered. Their speed varies from the first few months of the flood to the most dynamic process in nature. It happened in front of people. This may make life on the river bank and the utilization of river resources more difficult. This paper introduces the causes and consequences of the danger performance of riverbed processes, and focuses on the mapping methods of the danger assessment of riverbed processes: determining the danger degree of riverbed processes and different methods of displaying it on the map. An example of displaying danger on the previously drawn map is given, and the distribution of different types and expression degrees of dangerous riverbed processes under various natural conditions in Russia is briefly analyzed.
Land suitability analysis using geographic information systems (GIS) is one of the most widely used method today. In this type of studies, GIS and geo-spatial statistical tools are used to evaluate land units and present the results in suitability maps. The present work aims to characterize the suitability of soils in the province of Catamarca for pecan nut production according to the variables: rockiness, salinity, risk of water-logging, depth, texture and drainage described in the Soil Map of Argentina at a scale of 1:500,000 published by the National Institute of Agricultural Technology. A classification of the suitability of the soil cartographic units was made according to crop requirements, applying the methodology proposed by FAO. The standardization of variables made by omega score and the calculation of the spatial classification score were carried out as a result of the synthesis of the spatial distribution of soil suitability. The applied methodology allowed obtaining the soil suitability map resulting in a total of 60,662 km2 suitable for pecan nut production, which accounts for 59.8% of the total area of the province.
In casting industries, issue of spent molding sand disposal is the origin of molding sand reclamation. Among from all reclamation concepts the thermal reclamation method is better for no-bake sand system. This study focuses on the evaluation of sand quality by considering physical and chemical characteristics of molding sand, which is reclaimed by thermal reclamation method. Electric fuel and fluidization mechanism is used in thermal reclamation system. Effect of reclamation temperature, soaking period and sand quantity on % reclamability, grain size, ADV and on LOI is investigated. The average grain size, low ADV, low LOI and acceptable % reclamability of thermally reclaimed sand are studied.
One of the biggest environmental problems that has affected the planet is global warming, due to high concentrations of carbon (CO2), which has led to crops such as coffee being affected by climate change caused by greenhouse gases (GHG), especially by the increase in the incidence of pests and diseases. However, carbon sequestration contributes to the mitigation of GHG emissions. The objective of this work was to evaluate the carbon stored in above and below ground biomass in four six-year-old castle coffee production systems. In a trial established under a Randomized Complete Block Design (RCBD) with the treatments Coffee at free exposure (T1), Coffee-Lemon (T2), Coffee-Guamo (T3) and Coffee-Carbonero (T4), at three altitudes: below 1,550 masl, between 1,550 and 2,000 masl and above 2,000 masl. Data were collected corresponding to the stem diameters of coffee seedlings and shade trees with which allometric equations were applied to obtain the carbon variables in the aerial biomass and root and the carbon variables in leaf litter and soil obtained from their dry matter. Highly significant differences were obtained in the four treatments evaluated, with T4 being the one that obtained the highest carbon concentration both in soil biomass with 100.14 t ha-1 and in aerial biomass with 190.42 t ha-1.
Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. Cisplatin-loaded nanoparticle formulations were optimized utilizing response surface methods and the central composite rotating design model. This study employed a central composite rotatable design with a three-factored factorial design with three tiers. Three independent variables namely drug polymer ratio, aqueous organic phase ration, and stabilizer concentration were used to examine the particle size, entrapment efficiency, and drug loading of cisplatin PLGA nanoparticles as responses. The results revealed that this response surface approach might be able to be used to find the best formulation for the cisplatin PLGA nanoparticles. A polymer ratio of 1:8.27, organic phase ratio of 1:6, and stabilizer concentration of 0.15 were found to be optimum for cisplatin PLGA nanoparticles. Nanoparticles made under the optimal conditions found yielded a 112 nm particle size and a 95.4 percent entrapment efficiency, as well as a drug loading of 9 percent. The cisplatin PLGA nanoparticles tailored for scanning electon microscopy displayed a spherical form. A series of in vitro tests showed that the nanoparticle delivered cisplatin progressively over time. According to this work, the Response Surface Methodology (RSM) employing the central composite rotatable design may be successfully used to simulate cisplatin-PLGA nanoparticles.
In this study, the enrichment of the major oxide, trace element/heavy metal and rare earth element contents of the rocks outcropping in Kısacık and its vicinity (Ayvacık-Çanakkale/Türkiye) were investigated. The rocks in the field were handled in 5 groups, and whole rock analyses were carried out for 22 samples collected representing these rock groups and Element Enrichment Factor (EEF) of the major oxide, trace element/heavy metal and rare earth element contents of the rocks were calculated. As a result, it was determined that the Kısacık volcanics were enriched in SiO2, Fe2O3, K2O, Be, Co, Cs, Th, U, W, La, Eu, Tm, Yb, Lu, Mo, As, Cd, Sb, Bi and Hg elements at a rate of >1 to >150 according to the upper crust values, and the Fe2O3, MgO, CaO, TiO2, P2O5, MnO, Cr, Sc, Co, Nb, Sr, Mo, Cu, Ni, Cad, Sb, Bi, V, Cu and Cd concentrations of the Ophiolitic Mélange were enriched in ratios ranging from >1 to >36 according to the upper crust values. It has been also observed that the listvenitic rocks in the Ophiolitic Mélange are enriched in Cr, Co, Ni, As and Hg elements compared to the upper crust. As to Kazdağ Group, MgO, CaO, K2O, MnO, Cr, Co, Ta, U, W, Mo, Cu, Ni, As and Cd were enriched. Listvenite were enriched in SiO2, Fe2O3, MgO, Mn, Cr, Co, Ni, As, Sb and Hg at a rate of >1 to >32 according to the upper crust values. When the rocks in the area were evaluated together, some oxides (e.g., CaO, MgO, Fe2O3, TiO2) and elements (e.g., Cr, Ni, Co) were enriched due to parental rock, while some oxides (e.g., SiO2, K2O and MnO) and elements (As, Sb, Hg) were enriched due to epigenic processes such as hydrothermal alteration and weathering.
Copyright © by EnPress Publisher. All rights reserved.