The quality of indoor classroom conditions influences the well-being of its occupants, students and teachers. Especially the temperature, outside acceptable limits, can increase the risk of discomfort, illness, stress behaviors and cognitive processes. Assuming the importance of this, in this quantitative observational study, we investigated the relationship between two environmental variables, temperature and humidity, and students’ basic emotions. Data were collected over four weeks in a secondary school in Spain, with environmental variables recorded every 10 minutes using a monitoring kit installed in the classroom, and students’ emotions categorized using Emotion Recognition Technology (ERT). The results suggest that high recorded temperatures and humidity levels are associated with emotional responses among students. While linear regression models indicate that temperature and humidity may influence students’ emotional experiences in the classroom, the explanatory power of these models may be limited, suggesting that other factors could contribute to the observed variability in emotions. The implications and limitations of these findings for classroom conditions and student emotional well-being are discussed. Recognizing the influence of environmental conditions and monitoring them is a step toward establishing smart classrooms.
Smallholder cocoa producers often experience low productivity levels, partly due to their weak collaborative advantage (CA). CA enables businesses to optimize outcomes through effective collaboration within value chains. This paper aims at examining the effect of CA pillars (trust building, resource investment, and decision synchronization) on the productivity. This paper uses primary data of 406 samples from smallholder cocoa producers in Indonesia. The data is analyzed by using CDM (Crepon Duguet Mairesse) model that divides the CA process into three stages: effort, output, and productivity. In the first stage, our model shows that having motivation to collaborate positively affects collaborative effort expenditure to develop a CA. In the second stage, the study finds that the three pillars of CA have to some degree contributes to achieving a better access to finance, superior cocoa seeds, and cocoa processing technology for smallholder cocoa producers. In the third stage, acquiring the outputs of CA leads to productivity improvement. The findings underscore the significance of intangible factors in shaping robust Collaborative Advantage (CA) and influencing productivity. This enriches CA theory, which has traditionally focused primarily on tangible factors.
Surveys are one of the most important tasks to be executed to get valued information. One of the main problems is how the data about many different persons can be processed to give good information about their environment. Modelling environments through Artificial Neural Networks (ANNs) is highly common because ANN’s are excellent to model predictable environments using a set of data. ANN’s are good in dealing with sets of data with some noise, but they are fundamentally surjective mathematical functions, and they aren’t able to give different results for the same input. So, if an ANN is trained using data where samples with the same input configuration has different outputs, which can be the case of survey data, it can be a major problem for the success of modelling the environment. The environment used to demonstrate the study is a strategic environment that is used to predict the impact of the applied strategies to an organization financial result, but the conclusions are not limited to this type of environment. Therefore, is necessary to adjust, eliminate invalid and inconsistent data. This permits one to maximize the probability of success and precision in modeling the desired environment. This study demonstrates, describes and evaluates each step of a process to prepare data for use, to improve the performance and precision of the ANNs used to obtain the model. This is, to improve the model quality. As a result of the studied process, it is possible to see a significant improvement both in the possibility of building a model as in its accuracy.
Despite having a strategic position in supporting the Indonesian economy, the productivity of SME’s is still suboptimal. The increase in the number of SME’s has not been followed by increased competitiveness due to various limitations experienced by this sector. In an effort to provide a comprehensive picture in improving the performance of food processing SME’s in developing countries such as Indonesia, the purpose of this study was to examine the function of product innovation, internet marketing, and brand identity in shaping competitive advantage having an impact on business performance. This research is focused on food processing SME’s in the city of Bogor. The number of samples used was 100 SME’s. The sampling method used the non-probability sampling method with a snowball sampling technique. The data obtained were analyzed using the Structural Equation Model (SEM). Based on the age characteristic of business actors, the majority of business actors were 40–50 years old, of which 52% had their final formal education at high school level. As many as 61% of respondents had attended business training. Based on the results of the Partially Least Square (PLS) SEM analysis, it was found that product innovation, internet marketing and brand identity all had a significant positive effect on competitive advantage and business performance. The influence of brand identity on competitive advantage had the greatest effect, with a value of 0.451. This study contributes to existing research by examining the determinants of the business performance of processed food SME’s through the holistic model offered. This research is innovative because the business raises new issues related to internet marketing by SME’s and investigates them empirically.
Named Entity Recognition (NER), a core task in Information Extraction (IE) alongside Relation Extraction (RE), identifies and extracts entities like place and person names in various domains. NER has improved business processes in both public and private sectors but remains underutilized in government institutions, especially in developing countries like Indonesia. This study examines which government fields have utilized NER over the past five years, evaluates system performance, identifies common methods, highlights countries with significant adoption, and outlines current challenges. Over 64 international studies from 15 countries were selected using PRISMA 2020 guidelines. The findings are synthesized into a preliminary ontology design for Government NER.
Copyright © by EnPress Publisher. All rights reserved.