Forest transition is a trend change process from decreasing to increasing forest area in a country or region. Since the 1990s, ecological and environmental problems such as climate change and loss of biodiversity have received constant attention. The research theory and method of forest transformation has gradually become the frontier and hot topic pursued by international academic circle. With forest transformation as the theme, on the basis of introducing the origin of forest transformation research, along the development vein and internal logic of forest transformation research, this paper reviews the research progress of forest transition theory from the perspectives of Kuznets curve of forest environment and forest transition path, and summarizes the major issues in forest transformation research. The main direction of future research is proposed, including the impact of economic globalization on forest transition, the refinement of research units and the analysis of forest quality transition.
We reviewed the research on super-hydrophobic materials. Firstly, we introduced the basic principles of super-hydrophobic materials, including the Young equation, Wenzel model, and Cassie model. Then, we summarized the main preparation methods and research results of super-hydrophobic materials, such as the template method, soft etching method, electrospinning method, and sol-gel method. Among them, the electrospinning method that has developed in recent years is a new technology for preparing micro/nanofibers. Finally, the applications of super-hydrophobic materials in the field of coatings, fabric and filter material, anti-fogging, and antibacterial were introduced, and the problems existing in the preparation of super-hydrophobic materials were pointed out, such as unavailable industrialized production, high cost, and poor durability of the materials. Therefore, it is necessary to make a further study on the application of the materials in the selection, preparation, and post-treatment.
Flash flood is one of the major natural hazards in China. It seriously threatens the lives of people and property in mountainous areas. Various methods have been developed for flash flood study, but most of them focused on the past few decades. As one of the effective methods of historical flash flood events reconstruction, dendrogeomorphology has been used worldwide. It can provide hazard information with long temporal scale and high temporal resolution, sometimes at the seasonal level. By comparing tree ring width and other growth characteristics between disturbed and undisturbed trees, growth disturbance signals can be found in the disturbed trees. Using the growth disturbance in tree rings, flash flood events can be dated, and then the frequency, size, and spatial distribution characteristics of flash floods that have no or little documentary records can be reconstructed. The discharge of flash flood can be reconstructed quantitatively according to the height of scars or by using hydraulic models. With the development of dendrogeomorphology, research tends to probe into the meteorological driving mechanism of flash floods and the pattern of flash floods on a larger spatial scale. In the practical application of dendrogeomorphology, more instrumental data and historical records are applied in the studies. This makes the method increasingly more widely used around the world. But work based on dendrogeomorphology has not been reported in China. In this article, we reviewed the development of the study on flash floods based on tree ring, briefly summarized the research progress, and discussed the advantages, limitations, and potential of this approach, so as to provide some reference information for relevant work in China.
The sea level rise under global climate change and coastal floods caused by extreme sea levels due to the high tide levels and storm surges have huge impacts on coastal society, economy, and natural environment. It has drawn great attention from global scientific researchers. This study examines the definitions and elements of coastal flooding in the general and narrow senses, and mainly focuses on the components of coastal flooding in the narrow sense. Based on the natural disaster system theory, the review systematically summarizes the progress of coastal flood research in China, and then discusses existing problems in present studies and provide future research directions with regard to this issue. It is proposed that future studies need to strengthen research on adapting to climate change in coastal areas, including studies on the risk of multi- hazards and uncertainties of hazard impacts under climate change, risk assessment of key exposure (critical infrastructure) in coastal hotspots, and cost-benefit analysis of adaptation and mitigation measures in coastal areas. Efforts to improve the resilience of coastal areas under climate change should be given more attention. The research community also should establish the mechanism of data sharing among disciplines to meet the needs of future risk assessments, so that coastal issues can be more comprehensively, systematically, and dynamically studied.
The electron/hole transport layer can promote charge transfer and improve device performance, which is used in perovskite solar cells. The nanoarray structure transport layers can not only further promote carrier transport but also reduce recombination. It also has a great potential in enhancing perovskite light absorption, improving device stability and inhibiting the crack nucleation of different structure layers in perovskite solar cells. This paper reviewed the research progress of perovskite solar cells with different nanoarray structure transport layers. The challenges and development directions of perovskite solar cells based on nanoarray structure transport layers are also summarized and prospected.
Copyright © by EnPress Publisher. All rights reserved.