This study investigates the impact of artificial intelligence (AI) integration on preventing employee burnout through a human-centered, multimodal approach. Given the increasing prevalence of AI in workplace settings, this research seeks to understand how various dimensions of AI integration—such as the intensity of integration, employee training, personalization of AI tools, and the frequency of AI feedback—affect employee burnout. A quantitative approach was employed, involving a survey of 320 participants from high-stress sectors such as healthcare and IT. The findings reveal that the benefits of AI in reducing burnout are substantial yet highly dependent on the implementation strategy. Effective AI integration that includes comprehensive training, high personalization, and regular, constructive feedback correlates with lower levels of burnout. These results suggest that the mere introduction of AI technologies is insufficient for reducing burnout; instead, a holistic strategy that includes thorough employee training, tailored personalization, and continuous feedback is crucial for leveraging AI’s potential to alleviate workplace stress. This study provides valuable insights for organizational leaders and policymakers aiming to develop informed AI deployment strategies that prioritize employee well-being.
The presence of a crisis has consistently been an inherent aspect of the Supply Chain, mostly as a result of the substantial number of stakeholders involved and the intricate dynamics of their relationships. The objective of this study is to assess the potential of Big Data as a tool for planning risk management in Supply Chain crises. Specifically, it focuses on using computational analysis and modeling to quantitatively analyze financial risks. The “Web of Science—Elsevier” database was employed to fulfill the aims of this work by identifying relevant papers for the investigation. The data were inputted into VOS viewer, a software application used to construct and visualize bibliometric networks for subsequent research. Data processing indicates a significant rise in the quantity of publications and citations related to the topic over the past five years. Moreover, the study encompasses a wide variety of crisis types, with the COVID-19 pandemic being the most significant. Nevertheless, the cooperation among institutions is evidently limited. This has limited the theoretical progress of the field and may have contributed to the ambiguity in understanding the research issue.
The digitalization of the construction industry is deemed a crucial element in Construction 4.0’s vision, attainable through the implementation of digital twinning. It is perceived as a virtual strategy to surmount the constraints linked with traditional construction projects, thereby augmenting their productivity and effectiveness. However, the neglect to investigate the causal relationship between implementation and construction project management performance has resulted from a lack of understanding and awareness regarding the consequences of digital twinning implementation, combined with a shortage of expertise among construction professionals. Consequently, this paper extensively explores the relationship between digital twinning implementation and construction project management performance. The Innovation Diffusion Theory (IDT) is employed to investigate this relationship, utilizing a quantitative research approach through document analysis and questionnaire surveys. Additionally, partial least squares structural equation modeling (PLS-SEM) with SmartPLS software is employed to deduce the relationship. The results underscore that digital twinning implementation significantly improves construction project management performance. Despite recognizing various challenges in digital twinning implementation, when regarded as moderating factors, these challenges do not significantly impact the established causal relationship. Therefore, this investigation aligns with the national push toward the digitalization of the construction sector, highlighting the positive impacts of digital twinning implementation on construction project management performance. Moreover, this study details the impacts of implementing digital twinning from the construction industry’s perspective, including positive and negative impacts. Afterwards, this paper addresses the existing research gap, providing a more precise understanding and awareness among construction industry participants, particularly in developing nations.
Ancestral knowledge is essential in the construction of learning to preserve the sense of relevance, transmit and share knowledge according to its cultural context, and maintain a harmonious relationship with nature and sustainability. The objective of this research is to study and analyze the management of ancestral knowledge in the production of the Raicilla to provide elements to rural communities, producers, and facilitators in decision-making to be able to innovate and be more productive, competitive, sustainable, and improve people’s quality of life. The methodological strategy was carried out through Bayesian networks and Fuzzy Logic. To this end, a model was developed to identify and quantify the critical factors that impact optimally managed technology to generate value that translates into innovation and competitive advantages. The evidence shows that the optimal and non-optimal management of knowledge, technology, and innovation management and its factors, through the causality of the variables, permits us to capture the interrelationship more adequately and manage them. The results show that the most relevant factors for adequate management of ancestral knowledge in the Raicilla sector are facilitators, denomination of origin, extraction and fermentation, and government. The proposed model will support these small producers and help them preserve their identity, culture, and customs, contributing greatly to environmental sustainability.
Copyright © by EnPress Publisher. All rights reserved.