As a flexible working style, working anytime from anywhere can attract talented individuals due to flexibility and expanded talent pools. This literature review analyzes talent attraction through flexible work anytime from anywhere, as it applies to the current work style. The findings show that remote work is attractive for gifted individuals seeking meaningful and fulfilling work opportunities. Flexibility lets employees work remotely and allows them to plan their workdays around their schedules. They can pick when they are most productive and fit in personal obligations like taking care of their families or engaging in hobbies. By removing regional restrictions, businesses can access a far bigger talent pool. Employers can hire workers from several cities, nations, or even continents remote labor. By having access to a larger talent pool, employers are more likely to hire highly qualified workers who might not be accessible or willing to move for a traditional office position.
Modelling and simulation have now become standard methods that serve to cut the economic costs of R&D for novel advanced systems. This paper introduces the study of modelling and simulation of the infrared thermography process to detect defects in the hydroelectric penstock. A 3-D penstock model was built in ANSYS version 19.2.0. Flat bottom holes of different sizes and depths were created on the inner surface of the model as an optimal scenario to represent the subsurface defect in the penstock. The FEM was applied to mimic the heat transfer in the proposed model. The model’s outer surface was excited at multiple excitation frequencies by a sinusoidal heat flux, and the thermal response of the model was presented in the form of thermal images to show the temperature contrast due to the presence of defects. The harmonic approximation method was applied to calculate the phase angle, and its relationship with respect to defect depth and defect size was also studied. The results confirmed that the FEM model has led to a better understanding of lock-in infrared thermography and can be used to detect subsurface defects in the hydroelectric penstock.
According to the World Health Organization (WHO), breast cancer is among the most common cancers worldwide. Most of the anticancer agents have been showing a variety of side effects. Recently, bacterial proteins have been investigated as promising anticancer agents. Azurin is a bacterial cupredoxin protein secreted from Pseudomonas aeruginosa and has been reported as a potent multi-targeting anticancer agent, which makes it an appropriate candidate for drug delivery. Azurin may be delivered to cancer cells using different carriers like polymeric micro and nanoparticles. In the present study, azurin was extracted from the bacterial host and loaded into chitosan particles. Then its effect on MCF-7 cell line was investigated. Chitosan-azurin particles were made using the ion gelation method. Results showed that chitosan-azurin particles are about 200 nm, and the loading of the protein in particles did not affect its integrity. The MTT assay showed a significant reduction in cell viability in azurin and chitosan-azurin-treated cells. The toxicity level after 5 days was 63.78% and 82.53% for free azurin and chitosan-azurin-treated cells, respectively. It seems using an appropriate carrier system for anticancer proteins like azurin is a promising tool for developing low side effect anticancer agents.
This paper is devoted to the determination of the dispersive component of the surface energy of two boron materials such as h-BN and BPO4 surfaces by using the inverse gas chromatography (IGC) at infinite dilution. The specific interactions and Lewis’s acid-base parameters of these materials were calculated on the light of the new thermal model concerning the dependency of the surface area of organic molecules on the temperature, and by using also the classical methods of the inverse gas chromatography as well as the different molecular models such as Van der Waals, Redlich-Kwong, Kiselev, geometric, Gray, spherical, cylindrical and Hamieh models. It was proved that h-BN surface exhibits higher dispersive surface energy than BPO4 material.
The specific properties of interaction of the two boron materials were determined. The results obtained by using the new thermal model taking into account the effect of the temperature on the surface area of molecules, proved that the classical IGC methods, gave inaccurate values of the specific parameters and Lewis’s acid base constants of the solid surfaces. The use of the thermal model allowed to conclude that h-BN surface has a Lewis basicity twice stronger than its acidity, whereas, BPO4 surface presents an amphoteric character.
The agronomic use of mushroom post-harvest substrates (SPCHs) in horticultural seedbeds could be an interesting alternative for the reuse of these wastes in line with the European circular economy strategy. This work evaluates the potential use of four treatments with different SPCHs, mushroom (-Ch), mushroom (-St), mushroom compost (-CO), and a mixture (SPCH-Ch and SPCH-St) as substrates for lettuce and chili pepper seed germination. The trial was carried out in a germination chamber using commercial compost as a control treatment. The evaluation was based on its chemical (salinity, N and C content), physical (bulk and real density, porosity and water retention) and plant effect (germination and biomass) characteristics. Of the chemical properties studied, the high salinity in SPCH-Ch and SPCH-CO was a limiting factor for the development of the horticultural species evaluated (electrical conductivity 1:2.5; p/v; ~11 dS m-1), and low germination percentages were observed. Regarding physical properties, porosity and water retention, the SPCH-CO, SPCH-St and mixture treatments presented some values outside the optimal range established for germination substrates. In the case of SPCH-St, its high C/N ratio could be a limitation for supplying N to the crop. In relation to biomass production (aerial and root) of lettuce and chili pepper, all the treatments evaluated obtained similar values to the control treatment. The mixed treatment presented the highest biomass values, significantly higher in the lettuce crop. In general, the mixed treatment proved to be the best alternative for use in the seedbed.
Objective: To evaluate the imaging features of spondyloarthritis on magnetic resonance imaging (MRI) of the sacroiliac (SI) joints in terms of topography (in thirds) and affected margin, since this aspect is rarely addressed in the literature. Methods: Cross-sectional study with MRI (1.5 T) evaluation of the SI in 16 patients with diagnosis of axial spondyloarthritis regarding the presence of acute (subchondral bone edema, enthesitis, synovitis and capsulitis) and chronic changes (erosions, subchondral bone sclerosis, bone bridging and fatty replacement), performed by two radiologists, blinded to clinical data. MRI findings were correlated with clinical data including age, disease duration, medications, HLA-B27, BASDAI, ASDAS-VHS and ASDAS-PCR, BASMI, BASFI, and mSASSS. Results: Bone edema pattern and erosions showed predominance in the upper third of SI (p = 0.050, p = 0.0014, respectively). There was a correlation between the time of disease and structural changes by affected third (p = 0.028-0.037), as well as the presence of bone bridges with BASMI (p = 0.028) and mSASSS (p = 0.014). Patients with osteitis of the lower third had higher ASDAS values (ESRV: p = 0.011 and CRP: p = 0.017). Conclusion: Chronic inflammatory changes and the pattern of bone edema predominated in the upper third of the SI, but there was also concomitant involvement of the middle or lower thirds of the joint. The localization of involvement in the upper third of the SI was insufficient to differentiate between degeneration and inflammation.
Copyright © by EnPress Publisher. All rights reserved.