This article emphasizes the importance of Small and Medium-Sized Enterprises (SMEs) and large companies in driving economic growth. SMEs are labour-intensive and agile, creating more jobs, while large companies are capital-intensive and rely on technology, having more resources for research and development. In the Gulf Cooperation Council (GCC) region, SMEs contribute significantly to Gross Domestic Product (GDP) and job opportunities, while large companies dominate specific sectors. The research employs a multidisciplinary approach using an extensive literature review to summarize the current literature, highlight the economic impact of SMEs and large companies in GCC, and highlight the importance of large companies in developing local citizens. Policy-makers must consider these differences to integrate these dynamic changes for effective support policies. This study examines the economic impact of SMEs and large companies in the GCC region, providing recommendations to support large businesses. It addresses challenges and opportunities related to employment, household earnings, economic output, and value addition. Promoting the economic impact of SMEs and large companies can lead to sustainable economic growth and development in the GCC region. Also, this article pointed out the importance of large companies and their economic impact in the GCC region; policy recommendations will help the governing bodies in decision-making towards promoting sustainable economic growth.
Air pollution in Jakarta has become a severe concern in the last four months. IQAir, in August 2023, revealed that the level of air pollution had reached 161 points on the Air Pollution Standard Index (APSI). The negative impact on society has placed air pollution as a concern for environmental safety and survival in danger. This condition will encourage the development of a national policy agenda to integrate environmental welfare through various energy efficiency channels. This research analyzes the relationship between air pollutant elements that can reduce air quality. The analysis includes pollutant intensity measured by APSI per unit of pollutant as a measure of efficiency. The aim is to observe energy use, which causes an increase in pollutant levels. This research utilizes dynamic system modeling to produce relationships between parameters to produce factors that cause pollution. The parameters used are motorized vehicles, waste burning in landfills, industry, and power plants. The results of historical behavioral tests and statistical suitability tests show that the behavior is suitable for the short and long term. The simulation results show that the pollution level will worsen by the end of 2027, a hazardous condition for society. The optimistic scenario simulation model proposes immediate counter-measures to reduce pollution to 45.01, the ideal condition. To accelerate improvements in air quality, the Government can plan policies to reduce the use of coal by power plants and industry, as well as the use of electric motorized vehicles, resulting in an ideal reduction in pollution by 2024. In conclusion, pollution can be reduced effectively if the Government firmly implements policies to maintain that air quality remains stable below 50 points.
This study aims to use dialectical thinking to explore the impacts and responses of Artificial Intelligence (AI) empowerment on students’ personalized learning. The effect of AI empowerment on student personalization is dissected through a literature review and empirical cases. The study finds that AI plays a significant role in promoting personalized learning by enhancing students’ learning effectiveness through intelligent recommendation, automated feedback, improving students’ independent learning ability, and optimizing learning paths, however, the wide application of AI also brings problems such as technological dependence, cheating in exams, weakening of critical thinking ability, educational fairness, and data privacy protection to students. The study proposes recommendations to strengthen technology regulation, enhance the synergy between teachers and AI, and optimize the personalized learning model. AI-enabled personalized learning is expected to play a greater role in improving learning efficiency and educational fairness.
With the continuous development of network has also greatly developed, exploring the role of social network relationships and attachment emotions on consumer intention helps community managers to promote community purchases for more consumer. As another core component of social e-commerce, social media influencer also has a significant influence on consumer intention. This study systematically analyzed the effects of social network relationships and social media influencer characteristics on consumer purchase intentions. Introduced consumer attachment and perceived value as mediating variables to construct the research framework of this study. This article adopts quantitative analysis methods to test the research hypotheses proposed. This article collected 600 first-hand data in the form of a survey questionnaire and analyzed the data using AMOS and SPSS statistical software. The empirical analysis in this article confirms that social network relationships has a significant impact on consumer purchase intentions; social media influencer characteristics has a significant impact on consumer purchase intentions; consumer attachment has a significant impact on perceived value; consumer attachment plays a mediating role in the effect of social network relationships on consumers purchase intentions; perceived value plays no mediating role in the effect of social media influencer characteristics on consumer purchase intentions; perceived value plays a mediating role in the effect of consumer attachment on consumer purchase intentions; consumer attachment and perceived value have a chain mediating role between social network relationships and consumer purchase intentions.
Tourism experiences are inherently multisensory, engaging visitors’ senses of sight, sound, smell, taste, and touch. This study addresses the gap in literature by investigating the impact of visual and auditory landscapes on tourist emotions and behaviors within coastal tourism settings, using the Stimulus-Organism-Response (SOR) model. Data collected from tourists in Sanya, China, were analyzed using structural equation modeling. The results indicate that both visualscape and soundscape significantly influence tourist emotions (pleasure and arousal) and subsequent loyalty. Pleasure and arousal mediate the relationships between environmental stimuli and tourist loyalty, emphasizing their roles as emotional bridges between the environment and behaviors. These findings highlight the importance of integrating local cultural and community elements into tourism to enhance socio-economic benefits and ensure sustainable development. By fostering a deep connection between tourists and the local environment, these sensory experiences support the preservation of cultural heritage and promote sustainable tourism practices, aligning with the goals of economic development and public policy. The study contributes to the theoretical understanding of multisensory tourism by integrating the SOR model in coastal tourism and emphasizes the roles of visual and auditory stimuli. Practically, it provides insights for tourism managers to improve tourist experiences and loyalty through careful management of sensory elements. This has implications for infrastructure development, particularly in enhancing the quality of soft infrastructure such as cultural and social systems, which are crucial for sustainable tourism and community well-being. Future research could include additional sensory dimensions and diverse destinations for a comprehensive understanding of sensory influences on tourist behaviors and emotions. This research aligns with the broader goals of the policy and development by addressing critical aspects of infrastructure and socio-economic development within the tourism sector.
Copyright © by EnPress Publisher. All rights reserved.