Accurate prediction of US Treasury bond yields is crucial for investment strategies and economic policymaking. This paper explores the application of advanced machine learning techniques, specifically Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) models, in forecasting these yields. By integrating key economic indicators and policy changes, our approach seeks to enhance the precision of yield predictions. Our study demonstrates the superiority of LSTM models over traditional RNNs in capturing the temporal dependencies and complexities inherent in financial data. The inclusion of macroeconomic and policy variables significantly improves the models’ predictive accuracy. This research underscores a pioneering movement for the legacy banking industry to adopt artificial intelligence (AI) in financial market prediction. In addition to considering the conventional economic indicator that drives the fluctuation of the bond market, this paper also optimizes the LSTM to handle situations when rate hike expectations have already been priced-in by market sentiment.
With the rapid economic growth, the concept of digital economy and sustainable development has gradually become the main task facing our country. This paper constructs the evaluation system of the development level of digital economy and the comprehensive index of regional sustainable development by the entropy weight method, uses the two-way fixed effect model to explore the influence mechanism of digital economy on the sustainable development of the Yangtze River Delta region.
This study aims to assess the efficacy of speech-to-text (STT) technology in improving the writing abilities of special education pupils in Saudi Arabia. A deliberate sample of 150 special education college students was selected, with participants randomly allocated to either an experimental group employing STT technology or a control group using traditional writing methods. The study utilized a comprehensive approach, which included standardized writing assessments, questionnaires, and statistical analyses such as t-tests, correlation, regression, ANOVA, and ANCOVA. The results demonstrate a substantial enhancement in writing skills among the experimental group utilizing Speech-to-Text (STT) technology. The findings contribute to the discussion on assistive technology in special education and offer practical recommendations for educators and policymakers.
This study investigates the interaction between audit firms and key audit matters (KAMs) to measure their impact on financial reporting quality in Palestine, thereby enriching the discourse on financial reporting. A descriptive statistical method was used to analyze the audit reports of listed Palestinian firms from 2018 to 2022. A methodology that scrutinizes the clarity and informativeness of KAMs across different audit firms and KAM types, the research investigates how audit procedures and risk assessments contribute to the comprehensibility of KAM disclosures. The findings highlight a significant disparity in the readability of KAMs attributable to audit firm selection, with the non-Big Four firms exhibiting distinct approaches. This understanding, gathered through multivariate analysis, offers valuable contributions to the ongoing discourse on financial reporting quality, emphasizing the essential role of audit firms in shaping the effectiveness of audit reports and KAM disclosures.
The study aims to identify the effectiveness of social responsibility programs. More specifically, it seeks to identify the extent to which health institutions use social responsibility programs and to clarify the extent to which social responsibility programs succeed in achieving the goals of health institutions. The study sought to provide answers to the following questions: To what extent do health institutions use social responsibility programs? To what extent have social responsibility programs succeeded in achieving the goals of health institutions? The study used the descriptive analytical method, relying on the survey method. The study concluded with many results, the most important of which were the following: the effectiveness of social responsibility programs in marketing health services at the educational and age levels and the role of social media in marketing health services. The study recommended the necessity of providing an awareness dimension to marketing health services, with increasing training opportunities for workers in public relations departments in hospitals and health institutions to market health services, in addition to the necessity of conducting relevant research, studies, and surveys. Identify the activities that will help those working in the public relations department in health facilities with regard to identifying basic and influential needs and activities in directing successful health campaigns.
Copyright © by EnPress Publisher. All rights reserved.