Among contemporary computational techniques, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are favoured because of their capacity to tackle non-linear modelling and complex stochastic datasets. Nondeterministic models involve some computational intricacies when deciphering real-life problems but always yield better outcomes. For the first time, this study utilized the ANN and ANFIS models for modelling power generation/electric power output (EPO) from databases generated in a combined cycle power plant (CCPP). The study presents a comparative study between ANNs and ANFIS to estimate the power output generation of a combined cycle power plant in Turkey. The inputs of the ANN and ANFIS models are ambient temperature (AT), ambient pressure (AP), relative humidity (RH), and exhaust vacuum (V), correlated with electric power output. Several models were developed to achieve the best architecture as the number of hidden neurons varied for the ANNs, while the training process was conducted for the ANFIS model. A comparison of the developed hybrid models was completed using statistical criteria such as the coefficient of determination (R2), mean average error (MAE), and average absolute deviation (AAD). The R2 of 0.945, MAE of 3.001%, and AAD of 3.722% for the ANN model were compared to those of R2 of 0.9499, MAE of 2.843% and AAD of 2.842% for the ANFIS model. Even though both ANN and ANFIS are relevant in estimating and predicting power production, the ANFIS model exhibits higher superiority compared to the ANN model in accurately estimating the EPO of the CCPP located in Turkey and its environment.
Shared education has the potential to foster pluralistic values and improve relations between individuals from diverse ethno-linguistic backgrounds. This study aims to contribute to the understanding of how shared learning experiences can promote pluralism and social equality by examining the pedagogical factors that influence their success. This study focuses on a shared English learning model implemented with 8th-grade Arab and Jewish students in homogenous Israeli cities. This qualitative study, involving observations, interviews, focus groups, and transcript analysis, engaged 42 students, two teachers, and two administrators. The findings suggest that shared education has positive social implications. It facilitated interaction between Arab and Jewish students and challenged negative stereotypes. Notably, the Jewish students’ limited Arabic language proficiency led to complex interactions, stimulating critical thinking about linguistic inequality and increasing motivation to learn Arabic. While shared education improved intergroup relations, it also encountered logistical challenges that necessitated institutional support to optimize its effectiveness.
Lighting conditions in learning spaces can affect students’ emotions and influence their performance. This research seeks to verify the influence of classroom lighting on students’ academic performance under different conditions and measurement forms. The research method is based on the systematic review of research articles establishing case analyses characterizing lighting intensity and color temperature to determine ranges favorable to a higher level of attention and long-term memory. Also, this study shows relevant aspects of the cases representative of a sustainable solution and proposes a research model. The study found light intensity values between 350 and 1000 lux and color temperatures between 4000 and 5250 Kelvin that favor attention. Long-term memory reached the highest levels of measurement by analyzing different parameters sensitive to lighting conditions and questionnaires. In conclusion, it was demonstrated that an adequate light intensity and color temperature based on the greatest possible amount of natural light complemented with Light Emitting Diode (LED) light generates optimal lighting for the classroom, achieving energy efficiency in a sustainable solution and promoting student well-being and performance.
Brain tumors are a primary factor causing cancer-related deaths globally, and their classification remains a significant research challenge due to the variability in tumor intensity, size, and shape, as well as the similar appearances of different tumor types. Accurate differentiation is further complicated by these factors, making diagnosis difficult even with advanced imaging techniques such as magnetic resonance imaging (MRI). Recent techniques in artificial intelligence (AI), in particular deep learning (DL), have improved the speed and accuracy of medical image analysis, but they still face challenges like overfitting and the need for large annotated datasets. This study addresses these challenges by presenting two approaches for brain tumor classification using MRI images. The first approach involves fine-tuning transfer learning cutting-edge models, including SEResNet, ConvNeXtBase, and ResNet101V2, with global average pooling 2D and dropout layers to minimize overfitting and reduce the need for extensive preprocessing. The second approach leverages the Vision Transformer (ViT), optimized with the AdamW optimizer and extensive data augmentation. Experiments on the BT-Large-4C dataset demonstrate that SEResNet achieves the highest accuracy of 97.96%, surpassing ViT’s 95.4%. These results suggest that fine-tuning and transfer learning models are more effective at addressing the challenges of overfitting and dataset limitations, ultimately outperforming the Vision Transformer and existing state-of-the-art techniques in brain tumor classification.
In order to assess the effects of e-learning integration on university performance and competitiveness, this study uses Oman as a model for the Gulf. Analyzing how e-learning impacts technology integration, diversity, community engagement, infrastructure, financial strength, institutional reputation, student outcomes, research and innovation, and academic quality can reveal whether universities are effectively incorporating digital tools to enhance teaching and learning. By offering a framework for comparable institutions in the Gulf area, this study provides insights into optimizing e-learning techniques to improve university performance and competitiveness. This study uses the Structural Equation Modeling (SEM) with a dataset comprising 424 participants and 55 indicators, analyzed using both measurement and structural models. The results of the hypothesis testing, which indicate that e-learning has a positive effect on factors like student outcomes (B = 0.080, t = 2.859, P = 0.004) and institutional reputation (B = 0.058, t = 2.770, P = 0.005), lend credence to these beliefs. Omani universities need culturally sensitive e-learning, stronger institutional support, and training to enhance diversity (B = 0.002, t = 0.456, P = 0.647) and technology integration (B = −0.009, t = 0.864, P = 0.387). These improvements increase the visibility of Gulf institutions abroad, attracting the best students from all around the world and fostering an inclusive learning atmosphere. Financially speaking, e-learning offers reasonably priced solutions such as digital libraries and virtual laboratories, which are especially beneficial in a region where education plays a major role in socioeconomic development.
This study meticulously explores the crucial elements precipitating corporate failures in Taiwan during the decade from 1999 to 2009. It proposes a new methodology, combining ANOVA and tuning the parameters of the classification so that its functional form describes the data best. Our analysis reveals the ten paramount factors, including Return on Capital ROA(C) before interest and depreciation, debt ratio percentage, consistent EPS across the last four seasons, Retained Earnings to Total Assets, Working Capital to Total Assets, dependency on borrowing, ratio of Current Liability to Assets, Net Value Per Share (B), the ratio of Working Capital to Equity, and the Liability-Assets Flag. This dual approach enables a more precise identification of the most instrumental variables in leading Taiwanese firms to bankruptcy based only on financial rather than including corporate governance variable. By employing a classification methodology adept at addressing class imbalance, we substantiate the significant influence these factors had on the incidence of bankruptcy among Taiwanese companies that rely solely on financial parameters. Thus, our methodology streamlines variable selection from 95 to 10 critical factors, improving bankruptcy prediction accuracy and outperforming Liang’s 2016 results.
Copyright © by EnPress Publisher. All rights reserved.