Background: Through the development of robust techniques and their comprehensive validation, cardiac magnetic resonance imaging (CMR) has developed a wide range of indications in its almost 25 years of clinical use. The recording of cardiac volumes and systolic ventricular function as well as the characterization of focal myocardial scars are now part of standard CMR imaging. Recently, the introduction of accelerated image acquisition technologies, the new imaging methods of myocardial T1 and T2 mapping and 4-D flow measurements, and the new post-processing technique of myocardial feature tracking have gained relevance. Method: This overview is based on a comprehensive literature search in the PubMed database on new CMR techniques and their clinical application. Results and conclusion: This article provides an overview of the latest technical developments in the field of CMR and their possible applications based on the most important clinical questions.
Control of key technological and benchmark flows of polymer fluids poses a number of challenges. Some of them are nowadays under active investigation and rather far from complete understanding. This review considers such phenomena as both practically important and governed by fundamental laws of rheology and non-linear fluid mechanics. We observe, shear bands in polymeric and other complex structured fluids (like wormlike micellar solutions or soft glassy materials), birefrigerent strands, peculiarities of stress and pressure losses in fluids moving through complex shape domains. These and other processes involve inhomogeneity, instabilities and transient modes creeping in flow fields. In practical aspect this is of interest in such industrial process as polymer flooding for Enhanced Oil Recovery (EOR), where a flow inhomogeneity affects a polymer solution injectivity and residual oil saturation. The value of viscoelasticity in the polymer flooding is estimated. The observation is concluded by some new results on relation between polymer concentration in solutions and viscoelastic traits of benchmark flows.
Although much bibliometric research has been conducted to analyze publications on energy policy, a systematic investigation of the sustainability of nuclear energy use after the Fukushima nuclear accident is still lacking. Therefore, this study conducted a comprehensive bibliometric review of the sustainability of nuclear energy policy (NEP). This study discusses NEPs, highlighting their disadvantages; emerging research themes; and networks of the most productive authors, countries, journals, and institutions over the last 20 years (2002–2022). This timeframe was selected because of the Fukushima nuclear accident, which has been one of the largest environmental disasters in recent years. Bibliometric analysis was carried out by reviewing 1146 documents from the Scopus database using the keywords “energy policy” and “nuclear energy.” The OpenRefine software was used to deep-clean keywords with the same meaning, and VOSviewer was used to visualize them. The results show that over the past two decades, future research themes and trends in the study of NEP have focused on nuclear fuel, the Fukushima nuclear accident, risk perception, energy transition, and renewable energy. Bibliometric analysis has positively affected the development of NEP in countries that do not yet have nuclear power plants, such as Indonesia.
The 19th century proved to be one of the most complicated periods in Spanish history for the Spanish Crown, as it faced both internal conflicts—the French War of Independence—and external conflict—the independence of what were its territories in most of America. France did not remain indifferent to this and always had a clear idea of where to draw the boundaries of what “belonged” to it. Thus, amid the wave of independence movements in the Spanish colonies, the French continued to produce rich cartography to establish these boundaries and settle their power over the new nations that were arising after the period of revolutions. The cartography of Rigobert Bonne, the last cartographer of the French king and the Revolution Era, and one of its disciples, Eustache Hérisson, represent the perfect witness to the changes over the borders of the Spanish colonies during the change of the century. This study aims to analyze such cartography, examine the rich toponyms it offers, and examine the changes in the boundaries created over time between both empires. The main cartography we will rely on will be that of Bonne, one of the most important cartographers of the 18th century, and his disciple Hérisson, a geographer engineer, who lived through the onset of the conflicts and always prioritized the French perspective and the interests of their nation.
The most crucial factor in producing papaya seedlings successfully is seed germination. The purpose of this study was to investigate the influence of seed priming with growing media on seed germination and seedling growth of papaya from October to December 2022. The experimental treatments included three seed priming treatments: T0 = control (no seed priming treatments), T1 = GA3 (100 ppm), and T2 = KNO3 (1%), and four growing media, viz., M1 = soil + vermicompost (1:1), M2 = soil + cowdung (1:1), M3 = soil + cocopeat + vermicompost (1:1:1), and M4 = soil + cocopeat + cowdung (1:1:1). The treatments showed a significant effect on different parameters such as germination percentage, days to germination, survival percentage, chlorophyll content, seed vigor index, shoot, and root length. GA3 treated seedlings performed better than non-GA3-treated seedlings. Among the growing media, M3 showed the best for seed germination and other growth attributes compared to other growing media. In terms of interaction effects, T1M3 showed the highest performance for germination percentage (84.33%), survival percentage (91.0%), and chlorophyll content (44.26%). T1M3 also showed the highest seed vigor index, shoot and root growth, and plant biomass. As a result, the combination of GA3 and growing media containing soil + cocopeat + vermicompost was shown to be the most favorable for papaya seed germination and seedling growth.
Zero-valent iron is a moderately reducing reagent that is both non-toxic and affordable. In the present work, iron nanoparticles were synthesized using bitter guard leaf extract (Momordica charantia L.) (BGL-Fe NP). Using leaf samples from bitter protectant extract, iron nanoparticles were synthesized with secondary metabolites such as flavonoids and polyphenols acting as capping and reducing agents. Polyphenols reduce Fe2+/Fe3+ to nanovalent iron or iron nanoparticles. Iron nanoparticles were synthesized by reducing iron chloride as a precursor with bitter protective leaf extract in an alkaline environment. The obtained BGL-Fe NPs were calcined for 4 h at various temperatures of 400 °C, 500 °C, and 600 °C. The obtained samples were coded as BGL-Fe NPs-4, BGL-Fe NPs-5, and BGL-Fe NPs-6, respectively. The synthesized BGL-Fe NPs were systematically characterized by XRD, SEM, FTIR, UV-Vis and TG-DTA analysis. The obtained BGL-Fe NPs were then used as an adsorbent to remove the aqueous solution of basic methylene blue (MB) dye. MB concentration was monitored using UV-Vis spectroscopy.
Copyright © by EnPress Publisher. All rights reserved.