Beta macrocarpa, Guss is an interesting species showing very low germination rates. The leading objectives of this work were to investigate the dormancy mechanism and to find methods to break dormancy in order to achieve rapid, uniform and high germination. Macro and micro-morphologic analyses were performed by stereo microscopy and scanning electron microscopy showed two fruit coats. The yellow external coat or persistent perianth coat (PPC) was accrescent with 5 erect segments contiguous to the operculum of the seed capsule. This coat forms spongy layers (50 to 300 µm thick) that could be eliminated manually. The narrow internal coat or pericarp or achene coat (AC) forms woody joined seed capsules, each presenting a pressed operculum that cannot be manually opened. This coat was not adherent to seeds and was composed of compressed cells (50 to 200 µm thick) which form pockets for salt cristal. Seeds were lentiform (1 to 2 mm diameter and 0.5 to 0.8 mm thick) and highly fragile. The embryo was whitish surrounded peripherally by the perisperm with two highly developed cotyledons and radical. Polyphenol concentrations in both coats showed that after 4 months of collection, total polyphenol concentrations were 4-fold higher in the pericarp than in the persistent perianth. However, after one year, this parameter decreases significantly in the pericarp, whereas, it increases to a larger extent in the perianth. Different germination tests indicated that the pericarp provides a chemical and a physical resistance to seed germination during the first 4 months of the experiment after collection. The chemical dormancy was released to higher levels of total polyphenol compounds that inhibited seed germination and seedling growth. However, the physical dormancy was associated with the hardness of this intern coat which caused a mechanical resistance to radicle emergence. After one year of storage, total polyphenol pericarp concentration decreased notably, and chemical resistance disappeared, whereas the physical one persisted. Consequently, one year of storage pericarp removal is sufficient to break this exogenous dormancy.
Subcutaneous (SC) drug delivery is one of the best routes of drug administration to patients over intravenous (IV) administration due to the ease of application and patient acceptance. The main limitation of using the SC route is administering larger volumes of drug, greater than 3–5 mL for therapeutic dosages. Wearable injectors on body devices are an attractive option for larger-volume drug delivery to patients. Thus, the need for a self-administration strategy at home is growing faster and is required for the next level of time-dependent and high-volume drug delivery. The advances in low-cost, connected on-body delivery systems hold great opportunity for novel ways of delivering home-based drug therapy in the future.
Considering the application of the polymer electrolyte membrane fuel cell (PEMFC), the separator thickness plays a significant role in determining the weight, volume, and costs of the PEMFC. In addition, thermal management, i.e., temperature distribution is also important for the PEMFC system to obtain higher performance. However, there were few reports investigating the relation between the temperature profile and the power generation characteristics e.g., the current density distribution of PEMFC operated at higher temperatures (HT-PEMFC). This paper aims to study the impact of separator thickness on the temperature profile and the current density profile of HT-PEMFC. The impact of separator thickness on the gases i.e., H2, O2 profile of HT-PEMFC numerically was also studied using CFD software COMSOL Multiphysics in the paper. In the study, the operating temperature and the relative humidity (RH) of the supply gas were varied with the separator thickness of 2.0 mm, 1.5 mm, and 1.0 mm, respectively. The study revealed that the optimum thickness was 2.0 mm to realize higher power generation of HT-PEMFC. The heat capacity of the separator thickness of 2.0 mm was the biggest among the separators investigated in this study, resulting in the dry-up of PEM and catalyst layer was lower compared to the thinner separator thickness. It also clarified the effects of separator thickness of profile gases, e.g., O2, H2O, and current density profile became larger under the higher temperature and the lower RH conditions.
To rejuvenate the country through science and education, the university is an important position of China's personnel training system and a base for the production of human resources in our country. The higher education in the popularization stage has made a profound change in the employment mode of graduates, which makes the discipline structure and personnel training mode of colleges and universities adapt to the requirements of the market and society. Based on the employment situation of colleges and universities, this paper analyzes the significance, dilemma and suggestions of constructing a feedback mechanism for the quality of graduates, so as to help colleges and universities cultivate more high-quality talents.
Open pitaya (Stenocereus thurberi) flowers were marked at 10, 20, 30 and 40 days after floration (DAF). When fruit were formed, they were collected from each of the dates with the objective of evaluating physical, physiological and quality changes before and after harvest. In fruits with different DAF, the analyses of fruit size (diameter and length), weight, density, firmness, color in pulp and peel (L*, a* and b*), respiration rate (CO2) and ethylene production were carried out. In the case of ripe and overripe fruit, in addition to the variables mentioned above, pH, percentage of total soluble solids TSS and total acidity (% citric acid equivalents) were evaluated. Fruit with 40 DAF were stored for up to 14 days at 25 ℃ and 80% RH to evaluate daily changes in respiration rate and ethylene production. It was found that during development the fruit tended to grow more in length than in diameter. In color, the best indicators of changes during fruit development were the parameters L* and b* for peel and for flesh L* and a*. For firmness in pitaya fruits, no significant differences were found with the methodology used. Changes in ethylene production and respiration rate during storage and development showed the usual behavior of climacteric fruits. Pitaya fruits with 40 FDD presented quality characteristics similar to those accepted by the consumer for this type of fruit. It is concluded that it is possible to evaluate the different stages of development in DDF of pitaya fruit based on the changes of the color space variables L*, a* and b*, in addition to the fact that the fruit follows the classical climacteric behavior.
Public-Private Partnerships (PPPs) are mostly presented as a means to introduce efficient procurement methods and better value for money to taxpayers. However, the complexity of the PPP mechanism, their lack of transparency, accounting rules and implicit liabilities make it often impossible to perceive the amount of public expenditure involved and the long-run impact on taxpayers, providing room for fiscal illusion, i.e., the illusion that PPPs are much less expensive than traditional public investments. This psaper, thanks to a systematic review of the literature on the EU countries experience, tries to unveil the sources of this illusion by looking at the reasons behind the PPPs’ choice, their real costs, and the sources of fiscal risks. The literature suggests that PPPs are more costly than public funding, especially when contingent liabilities are not taken into account, and are employed as mechanisms to circumvent budgetary restrictions and to spend off-balance. The paper concludes that the public sector should share more risks with private sectors by reducing the amount of guarantees, and should prevent governments from operating through a sleight of hand that deflects attention away from off-balance financing, by applying a neutral fiscal recording system.
Copyright © by EnPress Publisher. All rights reserved.