This research paper aims to examine the association between financial development and environmental quality in 31 European Union (EU) countries from 2001 to 2020. This study proposed an estimation model for the study by combining regression models. The regression model has a dependent variable, carbon emissions, and five independent variables, including Urbanization (URB), Total population (POP), Gross domestic product (GDP), Credit to the private sector (FDB), and Foreign direct investment (FDI). This research used regression methods such as the Fixed Effects Model, Random Effects Model, and Feasible generalized least squaresThe findings reveal that URB, POP, and GDP positively impact carbon emissions in EU countries, whereas the FDB variable exhibits a contrary effect. The remaining variable, FDI, is not statistically significant. In response to these findings, we advocate for adopting transformative green solutions that aim to enhance the quality of health, society, and the environment, offering comprehensive strategies to address Europe’s environmental challenges and pave the way for a sustainable future.
Artificial Intelligence (AI) has become a pivotal force in transforming the retail industry, particularly in the online shopping environment. This study investigates the impact of various AI applications—such as personalized recommendations, chatbots, predictive analytics, and social media engagement—on consumer buying behaviors. Employing a quantitative research design, data was collected from 760 respondents through a structured online survey. The snowball sampling technique facilitated the recruitment of participants, focusing on diverse demographics and their interactions with AI technologies in online retail. The findings reveal that AI-driven personalization significantly enhances consumer purchase intentions and satisfaction. Multiple regression analysis shows that AI personalization (β = 0.35, p < 0.001) has the most substantial impact on purchase intention, followed by chatbot effectiveness (β = 0.25, p < 0.001), predictive analytics (β = 0.20, p < 0.001), and social media engagement (β = 0.15, p < 0.01). Similarly, AI personalization (β = 0.30, p < 0.001), predictive analytics (β = 0.25, p < 0.001), and chatbot effectiveness (β = 0.20, p < 0.001) significantly influence consumer satisfaction. The hierarchical regression analysis underscores the importance of ethical considerations, showing that ethical and transparent use of AI increases consumer trust and engagement. Model 1 explains 45% of the variance in consumer behavior (R2 = 0.45, F = 154.75, p < 0.001), while Model 2, incorporating ethical concerns, explains an additional 10% (R2 = 0.55, F = 98.25, p < 0.001). This study highlights the necessity for retailers to leverage AI technologies ethically and effectively to gain a competitive edge, improve customer satisfaction, and drive long-term success. Future research should explore the long-term impacts of AI on consumer behavior and the integration of emerging technologies such as augmented reality and the Internet of Things (IoT) in retail.
This study seeks to explore the information value of free cash flow (FCF) on corporate sustainability and investigate the moderating effects of board gender diversity and firm size on the association between FCF and corporate sustainability of Thai listed companies. The dataset consists of companies listed on the Stock Exchange of Thailand (SET) in 2022. Multivariate regression analysis is executed in this study. Subsequently, PROCESS macro served to evaluate the proposed hypotheses. This study found that FCF has a significant positive relationship with corporate sustainability. As well, board gender diversity and firm size both moderate the relationship between FCF and corporate sustainability, such that the positive effect of FCF on corporate sustainability is stronger when the proportion of female boards diminishes, while firm size is smaller. However, when firms have a larger proportion of females on the boards of directors for all levels of firm size, free cash flow indicates that there is no statistically significant effect on corporate sustainability. This study contributes to FCF and sustainability literature by understanding the extent of corporate sustainability.
Lack of knowledge, attitude, and behavior in managing leftover foods in households impacts the natural ecosystem and food chain, particularly in developing countries. This research aims to analyze appropriate methods for reducing and processing food waste produced in household areas. This research method uses qualitative research with operational research methods carried out for 6 months on 25 housewives in Pondok Labu Village in South Jakarta, Indonesia. The research was carried out in 3 stages, the first stage before the intervention, the second stage providing the intervention, and the third stage after the intervention. Results showed that before the intervention, on average each respondent produced 351 g of food waste each day. This amount decreased to 8.43 g/day after respondents participated in socialization to reduce food waste and training to manage food waste. The concluded that a combination of education and training improves knowledge, attitude, and behavior in household food waste management and helps moderate food waste generation.
Women’s financial literacy and financial inclusion have gained prominence in recent years. Despite progress, knowledge and access to finance remain common barriers for women, especially in emerging economies. Globally, domestic and economic violence has been recognized as a relevant social concern from a gender perspective. In this context, financial literacy and financial inclusion are considered to play a key role in reducing violence against women by empowering them with the necessary knowledge to manage their financial resources and make informed decisions. This study aims to evaluate the determinants that influence Peruvian female university students’ financial literacy and financial inclusion. To this end, a theoretical behavioral model is proposed, and a survey is applied to 427 female university students. The results are analyzed using a Partial Least Squares Structural Equation Model (PLS-SEM). The results validate all the proposed hypotheses and highlight significant relationships between financial literacy and women’s financial inclusion. A relevant relationship between financial attitude and financial behavior is also observed, as well as the influence of financial behavior and financial self-efficacy on financial literacy. The results also reveal that women feel capable of making important financial decisions for themselves and consider that financial literacy could help reduce gender-based violence. Based on these findings, theoretical and practical implications are raised. It highlights the proposal of a theoretical model based on antecedents, statistically validated in a sample of women in Peru, which lays the foundation for understanding financial literacy and financial inclusion in the Latin American region.
Introduction: Many detrimental effects on employees’ health and wellbeing might result from inadequate illumination in the workplace. Headaches and trouble focusing can result from eye strain brought on by inadequate illumination. The purpose of this study was to simulate and optimize workplace illumination in the ceramic industry. Materials and methods: A common Luxmeter ST-1300 was used to measure the illumination in seven workplaces at a height of 100 cm above the floor. DIALux evo version 7.1 software was used to simulate the illumination of workplaces. To optimize the illumination conditions, a numerical experiment design consisting of 16 scenarios was used for each of the workplaces. Four factors were considered for each scenario: luminaire height, number of luminaires, luminous flux, and light loss factor. The Design-Expert program version 13.0.5.0 was applied for developing the scenarios. Finally, by developing quadratic models for each workplace, the optimization process was implemented. Results: Every workplace had illumination levels that were measured to be between 250 and 300 lux. Instead of using compact fluorescent luminaires, LED technology was recommended to maximize the illumination conditions for the workers. Following optimization, 376 lux of illumination were visible at each workstation in every workspace. For the majority of the workspaces, the simulated illumination was expected to have a desirability degree greater than 0.9. The uniformity and illumination of the workplace were significantly impacted by the two factors of luminaire height and luminaire count. Conclusion: The primary outcomes of this optimization were the environmental, political, and socioeconomic ones, including reduced consumption power, high light flux, and environmental compatibility. Nonetheless, the optimization technique applied in this work can be applied to the design of similar situations, such as residential infrastructure.
Copyright © by EnPress Publisher. All rights reserved.