This study critically examines the implications of international transport corridor projects for Central Asian countries, focusing on the Western-backed Transport Corridor Europe-Caucasus-Asia (TRACECA), the Chinese initiative “One Belt—One Road”, and the International North-South Transport Corridor (INSTC) supported by the Russian Federation, India, and Iran. The analysis underscores the risks associated with Western projects, highlighting a need for a more explicit commitment to substantial infrastructure investments and persistent contradictions among key investors and beneficiaries. While the Chinese initiative presents significant benefits such as transit participation, infrastructure development, and economic investments, it also carries risks, notably an increased debt burden and potential monopolization by Chinese corporations. The study emphasizes that Central Asian countries, though indirect beneficiaries of INSTC, may not be directly involved due to geographical constraints. Study findings advocate for Central Asian nations to balance foreign investments, promote economic integration, and safeguard political and economic sovereignty. The study underscores the region’s wealth of natural and human resources, emphasizing the potential for increased demand for goods and services with improved living standards, strategically positioning these countries in the evolving global economic landscape.
Paraffin wax is the most common phase change material (PCM) that has been broadly studied, leading to a reliable optimal for thermal energy storage in solar energy applications. The main advantages of paraffin are its high latent heat of fusion and low melting point that appropriate solar thermal energy application. In addition to its accessibility, ease of use, and ability to be stored at room temperature for extended periods of time, Nevertheless, improving its low thermal conductivity is still a big, noticeable challenge in recently published work. In this work, the effect of adding nano-Cu2O, nano-Al2O3 and hybrid nano-Cu2O-Al2O3 (1:1) at different mass concentrations (1, 3, and 5 wt%) on the thermal characteristics of paraffin wax is investigated. The measured results showed that the peak values of thermal conductivity and diffusivity are achieved at a wight concentration of 3% when nano-Cu2O and nano-Al2O3 are added to paraffin wax with significant superiority for nano-Cu2O. While both of those thermal properties are negatively affected by increasing the concentration beyond this value. The results also showed the excellence of the proposed hybrid nanoparticles compared to nano-Cu2O and nano-Al2O3 as they achieve the highest values of thermal conductivity and diffusivity at a weight concentration of 5.0 wt%.
A reservoir of vegetation, wildlife, and medicinal plant abundance is represented by the Haridwar forest divisions. This study deals with the results of ethnobotanical survey of medicinal plants conducted in the Haridwar forest division during the period of December 2016 and March 2019. The information on folk medicinal use of plants were gathered by interviewing with local healers and Vaidya’s who have long been advising the folk medicines for medication of various disorders. The important folk medicinal data of 33 medicinal plants species belonging to 22 families and 33 genera practiced by tribal and local people of the study area has been recorded by the survey team of the Institute. Fabaceae followed by the Lamiacea and Asteraceae were the dominant families. The species diversity showed maximum exploration of Trees, Herbs followed by Shrubs and Climbers. Leaves, seed and root were the most prevalently used part in study followed by the stem bark, fruit, flower, stem and fruit pulp. During the study it was observed that the traditional practices of Gujjars of Uttarakhand have close relation with forests and have strong dependency on the same for food, medicine, timber and fodder etc. The information recorded for the treatment in different ailments has been presented in the paper in the pie charts and tabular form. In the recorded information most of the plants along with Plant name, Family name, Voucher Specimen No., Local Name/Unani name, Part Used, Diseases/Condition and Habitat/ICBN status so as to enrich the existing knowledge on ethnopharmacology. Many of the medications used today have their roots in traditional knowledge of medicinal plants and indigenous uses of plant material, and there are still a plethora of potentially useful pharmaceutical chemicals to be found. In this regard, more in-depth field research could aid in the discovery of novel plant species utilized in indigenous medical systems to improve patient needs. With this aim this study was conducted to explore and trace the ethnobotanical potential of flora of the Haridwar forest division so that it could prove to be immensely advantageous for both the development of new medications to treat dreadful and catastrophic illnesses as well as for the study and preservation of cultural and social variety.
Due to rising global environmental challenges, air/water pollution treatment technologies, especially membrane techniques, have been focused on. In this context, air or purification membranes have been considered effective for environmental remediation. In the field of polymeric membranes, high-performance polymer/graphene nanocomposite membranes have gained increasing research attention. The polymer/graphene nanomaterials exposed several potential benefits when processed as membranes. This review explains the utilization of polymer and graphene-derived nanocomposites towards membrane formation and water or gas separation or decontamination properties. Here, different membrane designs have been developed depending upon the polymer types (poly(vinyl alcohol), poly(vinyl chloride), poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), etc.) and graphene functionalities. Including graphene in polymers influences membrane microstructure, physical features, molecular permeability or selectivity, and separations. Polysulfone/graphene oxide nanocomposite membranes have been found to be most efficient with an enhanced rejection rate of 90%–95%, a high water flux >180 L/m2/h, and a desirable water contact angle for water purification purposes. For gas separation membranes, efficient membranes have been reported as polysulfone/graphene oxide and poly(dimethyl siloxane)/graphene oxide nanocomposites. In these membranes, N2, CO2, and other gases permeability has been found to be higher than even >99.9%. Similarly, higher selectivity values for gases like CO2/CH4 have been observed. Thus, high-performance graphene-based nanocomposite membranes possess high potential to overcome the challenges related to water or gas molecular separations.
Implementing green retrofitting can save 50–90% of energy use in buildings built worldwide. Government policies in several developed countries have begun to increase the implementation of green retrofitting buildings in those countries, which must rise by up to 2.5% of the lifespan of buildings by 2030. By 2050, it is hoped that more than 85% of all buildings will have been retrofitted. The high costs of implementing green retrofitting amounting to 20% of the total initial construction costs, as well as the uncertainty of costs due to cost overruns are one of the main problems in achieving the implementation target in 2050. Therefore, increasing the accuracy of the costs of implementing green retrofitting is the best solution to overcome this. This research is limited to analyzing the factors that influence increasing the accuracy of green retrofitting costs based on WBS, BIM, and Information Systems. The results show that there are 10 factors affecting the cost accuracy of retrofitting or customizing high-rise office buildings, namely Energy Use Efficiency, Water Use Efficiency, Use of Environmentally Friendly Materials, Maintenance of Green Building Performance during the Use Period, Initial Survey, Project Information Documents, Cost Estimation Process, Resources, Legal, and Quantity Extraction applied. These factors are shown to increase the accuracy of green retrofitting costs.
Copyright © by EnPress Publisher. All rights reserved.