The objectives achieved in the Paris Agreement to reduce greenhouse gas emissions and reduce dependence on fossil fuels have caused, in recent years, a growing importance on sustainability in companies in order to reduce Environmental, social and economic impacts. This study is focused on understanding how the variation in West Texas Intermediate crude oil prices affects the Dow Jones Sustainability Index, and therefore the companies included in it, and vice versa. The research aims to examine the statistical properties of both indices, using fractional integration methods, the fractional cointegration vector autoregressive (FCVAR) approach and the continuous wavelet transform (CWT) technique. The results warn of a change in trend, with the application of extraordinary measures being necessary to return to the original trend, while the analysis of cointegration and wavelet analysis measures reflect that an increase in those adopted based on sustainability by the different companies that make up the index imply a drop in the price of crude oil.
The main objective of this article is to analyze the relationship between increases in freight costs and inflation in the markets due to the increases reflected in the prices of the products in some economies in destination ports such as the United States, Europe, Japan, South Africa, the United Arab Emirates, New Zealand and South Korea. We use fractionally integrated methods and Granger causality test to calculate the correlation between these indicators. The results indicate that, after a significant drop in inflation in 2020, probably due to the confinement caused by the pandemic, the increases observed in inflation and freight costs are expected to be transitory given their stationary behavior. We also find a close correlation between both indicators in Europe, the United States and South Africa.
This study investigates the role of property quality in shaping booking intentions within the dynamic landscape of the hospitality sector. A comprehensive approach, integrating qualitative and quantitative methodologies, is employed, utilising Airdna’s dataset spanning from July 2016 to June 2020. Multiple regression models, including interaction terms, are applied to scrutinise the moderating role of property quality. The study unveils unexpected findings, particularly a counterintuitive negative correlation between property quality and booking intentions in Model 7, challenging conventional assumptions. Theoretical implications call for a deeper exploration of contextual nuances and psychological intricacies influencing guest preferences, urging a re-evaluation of established models within hospitality management. On a practical note, the study emphasises the significance of continuous quality improvement and dynamic strategies aligned with evolving consumer expectations. The unexpected correlation prompts a shift towards more context-specific approaches in understanding and managing guest behavior, offering valuable insights for both academia and the ever-evolving landscape of the hospitality industry.
This research explores the critical influence of corporate culture on small and medium-sized enterprises’ (SMEs) crisis response abilities under varied cross-cultural environments. Amid the disruptive backdrop of the COVID-19 pandemic, SMEs globally have faced unprecedented challenges. This study addresses a gap in the existing literature by conducting a cross-cultural analysis of SMEs in China, Thailand, and Germany to understand how corporate culture affects crisis management. Utilizing a competitive cultural value model, the research categorizes corporate culture into four dimensions: group culture, development culture, hierarchy culture, and rational culture. These cultural dimensions are investigated in relation to their impact on crisis response abilities. Additionally, national cultural dimensions such as individualism and uncertainty avoidance are examined as moderating variables. The findings reveal that group and development cultures positively influence crisis response abilities, enhancing organizational resilience and adaptability. Conversely, hierarchy culture negatively affects crisis management, hindering flexible response strategies. Rational culture supports structured crisis response through goal-oriented practices. National culture significantly moderates these relationships, with individualism and high uncertainty avoidance impacting the effectiveness of organizational cultural dimensions in crisis scenarios. This study offers theoretical advancements by integrating cultural dimensions with crisis response strategies and provides practical implications for SMEs striving to enhance their resilience and adaptability in a globalized business environment.
The proportion of national logistics costs to Gross Domestic Product (NLC/GDP) serve as a valuable indicator for estimating a country’s overall macro-level logistics costs. In some developing nations, policies aimed at reducing the NLC/GDP ratio have been elevated to the national agenda. Nevertheless, there is a paucity of research examining the variables that can determine this ratio. The purpose of this paper is to offer a scientific approach for investigating the primary determinants of the NLC/GDP and to advice policy for the reduction of macro-level logistics costs. This paper presents a systematic framework for identifying the essential criteria for lowering the NLC/GDP score and employs co-integration analysis and error correction models to evaluate the impact of industrial structure, logistics commodity value, and logistics supply scale on NLC/GDP using time series data from 1991 to 2022 in China. The findings suggest that the industrial structure is the primary factor influencing logistics demand and a significant determinant of the value of NLC/GDP. Whether assessing long-term or short-term effects, the industrial structure has a substantial impact on NLC/GDP compared to logistics supply scale and logistics commodity value. The research offers two policy implications: firstly, the goals of reducing NLC/GDP and boosting the logistics industry’s GDP are inherently incompatible; it is not feasible to simultaneously enhance the logistics industry’s GDP and decrease the macro logistics cost. Secondly, if China aims to lower its macro-level logistics costs, it must make corresponding adjustments to its industrial structure.
In this paper, we will provide an extensive analysis of how Generative Artificial Intelligence (GenAI) could be applied when handling Supply Chain Management (SCM). The paper focuses on how GenAI is more relevant in industries, and for instance, SCM where it is employed in tasks such as predicting when machines are due for a check-up, man-robot collaboration, and responsiveness. The study aims to answer two main questions: (1) What prospects can be identified when the tools of GenAI are applied in SCM? Secondly, it aims to examine the following question: (2) what difficulties may be encountered when implementing GenAI in SCM? This paper assesses studies published in academic databases and applies a structured analytical framework to explore GenAI technology in SCM. It looks at how GenAI is deployed within SCM and the challenges that have been encountered, in addition to the ethics. Moreover, this paper also discusses the problems that AI can pose once used in SCM, for instance, the quality of data used, and the ethical concerns that come with, the use of AI in SCM. A grasp of the specifics of how GenAI operates as well as how to implement it successfully in the supply chain is essential in assessing the performance of this relatively new technology as well as prognosticating the future of generation AI in supply chain planning.
Copyright © by EnPress Publisher. All rights reserved.