The technological development and growth of the telecommunications industry have had a great positive impact on the education, health, and economic sectors, among others. However, they have also increased rivalry between companies in the market to keep and acquire new customers. A lower level of market concentration is related to a higher level of competitiveness among companies in the sector that drives a country’s socioeconomic development. To guarantee and improve the level of competition, it is necessary to monitor the concentration level in the telecommunications market to plan and develop appropriate strategies by governments. With this in mind, the present work aims to analyze the concentration prediction in the telecommunications market through recurrent neural networks and the Herfindahl-Hirschman index. The results show a slight gradual increase in competition in terms of traffic and access, while a more stable concentration level is observed in revenues.
The main goal of this study is to assess the moderating role of digital leadership capabilities (DLC) in improving the overall performance of telecom companies through their organisational knowledge capabilities. The author builds a conceptual model with six hypotheses and tests them with data collected through an electronic questionnaire. The data is analysed using WarpPLS 8.0 software as an application of the structural equation modelling technique. The sample size included 528 participants. The study revealed that individual knowledge capability (IKC) does not significantly affect organisational performance (PR). Also, the results reveal that managerial knowledge capability (MKC) and organisational collaborative capability (OCC) have a positive but weak impact on the performance of telecom companies (PR). However, it was clear that individual knowledge capability (IKC) and organisational collaborative capability (OCC) do not affect organisational performance (PR) through the moderator, digital leadership capabilities (DLC). On the other hand, it was also evident that managerial knowledge capabilities (MKC) significantly negatively affect the performance of telecom companies (PR) through the moderator role of digital leadership capabilities (DLC). The author recommends that telecom companies adopt knowledge-based practices to ensure enduring high performance. He also suggests creating a knowledge management department to foster a culture of creativity and cooperation across departments, which is essential to establishing a work environment that promotes continuous learning and development. Findings may help telecom sector CEOs boost the company’s performance value. The research highlights the importance of fostering appropriate knowledge pillars and building digital leaders to shift telecom companies to a new successful stage. These findings offer tangible benefits that can be directly applied in the telecom industry, making the research highly relevant and valuable.
Firms, recognizing their Corporate Social Responsibility (CSR), are becoming catalysts for societal change by integrating Environmental, Social and Governance (ESG) criteria into their activities. The fashion industry exemplifies this effort, with an increasing number of companies embracing sustainability and ethical practices. In this context, our purpose is to provide a clear and comprehensive picture of the link between sustainability and business performance in the fashion industry. This work presents a Multivariate Regression Analysis, scrutinizing both external perspectives through stock prices and internal perspectives via profitability indices. Our aim is to discern the intricate relationship between sustainability practices and financial performance within the fashion industry, aligning ESG criteria with long-term economic success. Our regression analysis reveals a significant positive correlation between ESG scores and stock prices, indicating investor recognition of ESG performance as a crucial investment criterion. However, when focusing internally on profitability, the ESG score does not exhibit statistical significance, suggesting a yet-to-be-established connection between ESG policies and corporate profitability. This study underscores the evolving role of companies as sustainability promoters, emphasizing the crucial role of ESG performance in shaping investor perceptions. Nevertheless, it also highlights the need for further exploration into the intricate relationship between sustainable policies and corporate profitability. As businesses increasingly embrace sustainability, in fact, it could become paramount for informed decision-making and fostering ethical societal and environmental progress.
The purpose of this study is to investigate the relationship between the use of business intelligence applications in accounting, particularly in invoice handling, and the resultant disruption and technical challenges. Traditionally a manual process, accounting has fundamentally changed with the incorporation of BI technology that automates processes and allows for sophisticated data analysis. This study addresses the lack of understanding about the strategic implications and nuances of implementation. Data was collected from 467 accounting stakeholder surveys and analyzed quantitatively using correlational analysis. Multiple regression was utilized to investigate the effect of BI adoption, technical sophistication on operational and organizational performance enhancements. The results show a weak association between the use of BI tools and operational enhancements, indicating that the time for processing invoices has decreased. Challenges due to information privacy and bias were significant and negative on both operational and organizational performance. This study suggests that a successful implementation of a BI technology requires an integrated plan that focuses on strategic management, organizational learning, and sound policies This paper informs practitioners of how accounting is being transformed in the digital age, motivating accountants and policy makers to better understand accounting as it evolves with technology and for businesses to invest in concomitant advances.
This research explores the advancement of Artificial Intelligence (AI) in Occupational Health and Safety (OHS) across high-risk industries, highlighting its pivotal role in mitigating the global incidence of occupational incidents and diseases, which result in approximately 2.3 million fatalities annually. Traditional OHS practices often fall short in completely preventing workplace incidents, primarily due to limitations in human-operated risk assessments and management. The integration of AI technologies has been instrumental in automating hazardous tasks, enhancing real-time monitoring, and improving decision-making through comprehensive data analysis. Specific AI applications discussed include drones and robots for risky operations, computer vision for environmental monitoring, and predictive analytics to pre-empt potential hazards. Additionally, AI-driven simulations are enhancing training protocols, significantly improving both the safety and efficiency of workers. Various studies supporting the effectiveness of these AI applications indicate marked improvements in risk management and incident prevention. By transitioning from reactive to proactive safety measures, the implementation of AI in OHS represents a transformative approach, aiming to substantially reduce the global burden of occupational injuries and fatalities in high-risk sectors.
Copyright © by EnPress Publisher. All rights reserved.