This article evaluates the Didactic Strategies for Teaching Mathematics (DSTM) program, designed to enhance the teaching of mathematical content in primary and secondary education in a hybrid modality. In alignment with SENACYT’s Gender-STEM-2040 Policy, which emphasizes gender equality as a foundational principle of education, this study aims to assess whether initial teacher training aligns with this policy through the use of mathematical strategies promoting gender equality. A descriptive-correlational approach was applied to a sample of 64 educators, selected based on their responses during the training, with the goal of improving teaching and data collection methodologies. Findings indicate that, although most teachers actively engage in training, an androcentric approach persists, with sexist language and a curriculum that renders girls invisible, hindering the fulfillment of the National Gender Equality Policy in Science, Technology, and Innovation of Panama (Gender-STEM Policy 2040). Additionally, through a serendipitous finding, a significant gap in student activity levels, especially in secondary school, was discovered. While in primary school, activity levels were similar between genders, a decline in active participation among girls in secondary school was observed. This discovery, not initially contemplated in the study’s objectives, provides valuable insights into gender differences in active participation, particularly in higher educational stages. The serendipity suggests the need for further exploration of social, environmental, and family factors that may influence this decrease in girls’ active participation. The article concludes with a preliminary diagnosis and a call to deepen gender equality training and the effective implementation of coeducation in Panama’s educational system.
The failure to achieve sustainable development in South Africa is due to the inability to deliver quality and adequate health services that would lead to the achievement of sustainable human security. As we live in an era of digital technology, Machine Learning (ML) has not yet permeated the healthcare sector in South Africa. Its effects on promoting quality health services for sustainable human security have not attracted much academic attention in South Africa and across the African continent. Hospitals still face numerous challenges that have hindered achieving adequate health services. For this reason, the healthcare sector in South Africa continues to suffer from numerous challenges, including inadequate finances, poor governance, long waiting times, shortages of medical staff, and poor medical record keeping. These challenges have affected health services provision and thus pose threats to the achievement of sustainable security. The paper found that ML technology enables adequate health services that alleviate disease burden and thus lead to sustainable human security. It speeds up medical treatment, enabling medical workers to deliver health services accurately and reducing the financial cost of medical treatments. ML assists in the prevention of pandemic outbreaks and as well as monitoring their potential epidemic outbreaks. It protects and keeps medical records and makes them readily available when patients visit any hospital. The paper used a qualitative research design that used an exploratory approach to collect and analyse data.
In this paper, we explore the static and dynamic effects of oil rent on competitiveness in Saudi Arabia’s economy during the period 1970–2022. In addition, we examined the short-run, strong and long-run relationships between exports and industry, inflation, energy use (oil rents) and agriculture using the Autoregressive Distributed Lag (ARDL) approach developed. The analysis showed that government spending will contribute to enhancing the competitive environment with a difference of one year. Moreover, the industry will contribute to increasing competitiveness for a positive relationship in the long term. The results stated that there is an insignificant relationship between competitiveness, inflation, and oil rents. The analysis also shows that inflation has a negative impact with statistical significance in the short term. In addition, the error correction model (ECM) coefficient is negative and has statistical significance at 0.76 at a 1% significant level, which indicates the existence of an error correction mechanism and thus the existence of a long-term relationship between the variables.
Currently, there is a unique situation in the global economy, industrial eras coexist together, there is interaction and transformation of financial systems simultaneously within the framework of Industry 4.0 and Industry 5.0. New, digital resources are entering the economy, intellectual capital is becoming virtual, artificial intelligence is increasingly finding its application in the structure of financial support. Financial intermediation in developing countries is also subject to global trends, the active development of new instruments for developing economies is especially important. The aim of the study is to identify effective ways to develop financial intermediation in Industry 5.0 for the economies of developing countries. Based on the results of the study on the development of financial institutions mediation revealed a problem related to the lack of reasonable tools that could be used to improving the efficiency of the financial intermediaries market, proposed the main directions of such a process: mobilization of savings, distribution financial assets, payment system, risk management and control over market agents involved in financial operations.
The hopes and aspirations of Law No. 6/24 on Village autonomy has faced several problems and challenges. These problems and challenges arose when the village government had to undertake various delegated tasks assigned by the regency, provincial, and central governments. As a result, the village is preoccupied with delegated tasks assigned by supra-village authorities, straining its resources and budget. The shift in focus resulted the village government are unable to perform their main tasks and responsibilities. This situation is akin to the Village Head functioning as a state employee. Stunting is one of the assignment programs that causes various problems and instrumentalizes villages. This process involves mobilizing village institutions, human resources, and budgets to ensure the program’s success. This study employed exploratory-qualitative approach to investigate the challenges arising from the stunting program’s implementation in Ngargosari Village. The research informants included the village head, village officials, posyandu cadres, community leaders, and program beneficiaries. The data were gathered through in-depth interviews were validated and reconfirmed using Focus Group Discussions. Furthermore, an in-depth analysis was carried out to obtain findings related to village instrumentalization in the stunting program. The findings revealed that the stunting program’s implementation involved mobilizing village institutions, resources, and budgets. The village government lacked bargaining power against supra-village policies, despite their alignment with local values and wisdom. The central government dictated the system, procedures, mechanisms, and methods for handling stunting in a centralized manner, disregarding local wisdom and the authority of village governments as outlined in Law Number 6 of 2014 on Villages. Consequently, the stunting program represents a form of village instrumentalization akin to the New Order era, with centralistic initiatives that relegate village heads to the role of state employees.
The purpose of this study was to assess rural students’ computational thinking abilities. The following proofs were observed: (1) Students’ abstraction affected algorithmic thinking skills; (2) Students’ decomposition influenced algorithmic thinking skills; (3) Students’ abstraction impacted evaluation skills; (4) Students’ algorithmic thinking affected evaluation skills; (5) Students’ abstraction impacted generalization skills; (6) Students’ decomposition impacted generalization skills; (7) Students’ evaluation affected generalization skills. Gender differences were observed in the relationship among the computational thinking factors of junior high school students. This included the abstraction-generalization skills; evaluation-generalization skills; and decomposition-generalization skills relationships, which were moderated by the gender of the students. 258 valid surveys were collected, and they were utilized in the study. Conducting the descriptive, reliability, and validity analyses used SPSS software, and the structural equation modeling (SEM) was also conducted through Smart PLS software to assess the hypothetical relationships. There were gender disparities in the correlation among computational thinking components of the junior high school students’ studying in rural areas. Research has shown that male and female students may have different abstractions, evaluations, and generalizations related to computational thinking, with females being more strongly associated than males in non-programming learning contexts. These results are expected to provide relevant information in subsequent analyses and implement a computational thinking curriculum to overcome the still-existing gender gaps and promote computational thinking skills.
Copyright © by EnPress Publisher. All rights reserved.