The usage of cybersecurity is growing steadily because it is beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone is connected through the internet. It’s much easier for a thief to connect important data through cyber-attacks. Everyone needs cybersecurity to protect their precious personal data and sustainable infrastructure development in data science. However, systems protecting our data using the existing cybersecurity systems is difficult. There are different types of cybersecurity threats. It can be phishing, malware, ransomware, and so on. To prevent these attacks, people need advanced cybersecurity systems. Many software helps to prevent cyber-attacks. However, these are not able to early detect suspicious internet threat exchanges. This research used machine learning models in cybersecurity to enhance threat detection. Reducing cyberattacks internet and enhancing data protection; this system makes it possible to browse anywhere through the internet securely. The Kaggle dataset was collected to build technology to detect untrustworthy online threat exchanges early. To obtain better results and accuracy, a few pre-processing approaches were applied. Feature engineering is applied to the dataset to improve the quality of data. Ultimately, the random forest, gradient boosting, XGBoost, and Light GBM were used to achieve our goal. Random forest obtained 96% accuracy, which is the best and helpful to get a good outcome for the social development in the cybersecurity system.
Under the background of economic globalization and the rapid development of science and technology, the development of higher education (HE) has undergone profound changes. Nowadays, in order to increase the international competitiveness, training international talents has become the primary task of universities and HE institutions. Therefore, taking Shenzhen as an example, the research takes quantitative method to study how the educational resources in the society affect the school from a macro perspective, and the micro perspective of students, teachers and schools, studying the impact on the development of universities. Through in-depth analysis of the integration of educational resources, the results show that multilingual library resource, and other three factors followed, are critical factors in the development of HE. And then, this study puts forward corresponding countermeasures and suggestions after discussion, aiming to provide strategic insights to enhance the quality and international competitiveness of HE in the GBA, especially in the construction of multilingual library resources (MLR), international exchange platform (IEP), sufficient and diverse laboratory facilities (SDLF), and rich academic resources (RAR). Thus, the research narrows the gap in this field to some extent.
The area of lake surface water is shrinking rapidly in Central Asia. We explore anthropogenic and climate factors driving this trend in Shalkar Lake, located in the Aral Sea region in Kazakhstan, Central Asia. We employ the Landsat satellite archive to map interannual changes in surface water between 1986 and 2021. The high temporal resolution of our dataset allows us to analyze the water surface data to investigate the time series of surface water change, economic and agricultural activities, and climate drivers like precipitation, evaporation, and air temperature. Toward this end, we utilize dynamic linear models (DLM). Our findings suggest that the shrinking of Shalkar Lake does not exhibit a systemic trend that could be associated with climate factors. Our empirical analysis, adopted to address local conditions, reveals that water reduction in the area is related to human interventions, particularly agricultural activities during the research period. On the other hand, the retrospectively fitted values indicate a semi-regular periodicity despite anthropogenic factors. Our results demonstrate that climate factors still play an essential role and should not be disregarded. Additionally, considering long-term climate projections in environmental impact assessment is crucial. The projected increase in temperatures and the corresponding decline in lake size highlights the need for proactive measures in managing water resources under changing climatic conditions.
This study aimed to evaluate the impact of investors on the development of health and hospitality tourism in Kosovo. The study involved 50 investors from various hotel and healthcare companies. The guerrilla method was used for the methodology of this study. In this study, a semi-standardized instrument was used which measures the impact of investors in the development of health and hospitality tourism. The findings of this study have shown that there is a significant correlation between the investments made by investors and the development of health and hospitality tourism in Kosovo. Also, from the findings of the study, we understand that the male gender achieves a higher average of investments than the female gender in health and hotel tourism in Kosovo than the female gender. Finally, the findings of this study and the practical significance of these findings are discussed and recommendations are given regarding the findings of the study.
This research focuses on the construction of the competency of “Double-qualified” teachers in higher vocational colleges. Through comprehensive literature analysis, in-depth interviews and questionnaire surveys, a competency model covering three dimensions, namely personality charm, teaching literacy and practical skills, has been successfully established. This model provides a scientific basis for higher vocational colleges in teacher selection, performance evaluation and professional training, and particularly emphasizes the importance of teachers’ cultivation of students’ practical abilities and professional qualities in the context of vocational education. The research reveals that these three competency dimensions are interdependent and jointly influence teachers’ educational and teaching achievements as well as students’ career development.
This study aims to examine the impact of an innovative self-directed professional development (SDPD) model on fostering teachers’ professional development and improving their ability to manage this development independently. A quantitative research method was adopted, involving 60 participants from Almaty State Humanitarian and Pedagogical College No. 2, Almaty, Kazakhstan. Descriptive and inferential statistics were used to assess the SDPD model’s effectiveness, specifically in promoting teacher engagement, adoption of new pedagogical techniques, and improvement in reflective practices. The study findings reveal that teachers, particularly in developing regions, often face challenges in accessing formal professional development programs. The implementation of the SDPD model addresses these barriers by providing teachers with the tools and strategies required for self-improvement, regardless of geographic or economic constraints. The study participants in the pilot phase showed increased engagement with new pedagogical methods, improved reflective practices, and greater adaptability to emerging educational technologies. The algorithmic aspect of the model streamlined the professional development process, while the activity-based approach ensured that learning remained practical and relevant to teachers’ everyday needs. By offering a clear framework for continuous improvement, the model addresses the gaps in formal training access and cultivates a culture of lifelong learning. These findings suggest that the SDPD model can contribute to elevating teaching standards globally, particularly in regions with limited professional development resources.
Copyright © by EnPress Publisher. All rights reserved.