Smallholder paprika farmers in Zimbabwe contribute to local economies and food security but face supply chain challenges like limited market access and poor infrastructure which lead to post harvest losses and unpredictable prices. To survive, these farmers must adopt sustainable value networks to reduce operational costs and improve performance. This study sought to establish the effect of sustainable value networks on the operational performance of smallholder paprika farming in Zimbabwe. This study, using a positivist research philosophy and a quantitative approach, surveyed 288 smallholder paprika farmers in Zimbabwe. Exploratory factor analysis and partial least squares structural equation modelling were used to validate the constructs and test the hypothesised relationships. Results demonstrate a moderate level of implementation of value networks in smallholder paprika farming characterised by successes and challenges. The findings illustrated resource sharing among smallholder farmers, facilitated by initiatives, such as recycled seed exchanges and financial support through village savings and loan associations. However, results show that challenges persist, particularly with market access and financial support. Results indicate that there is a significant awareness and implementation of green supply chain management practices among smallholder paprika farmers even though they do not have access to resources and live in rural areas. The findings demonstrate that value networks significantly influence the adoption of green supply chain management practices, which in turn positively impact operational performance, environmental performance, and social performance. Green supply chain management practices were found to mediate the relationship between value networks and environmental performance, social performance, and operational performance, underlining the critical role of sustainable practices in enhancing performance outcomes. While environmental performance showed a positive effect on operational performance, the direct influence of social performance on operational performance was found to be statistically insignificant, suggesting the need for further exploration of the factors linking social benefits to operational efficiency. The research contributes to both theory and practice by presenting a sustainable value network model for smallholder paprika farmers, integrating value network, green supply chain management practices and environmental performance to enhance operational performance. Practical implications include policy recommendations to strengthen collaboration between smallholder farmers and other stakeholdersand address power imbalances with intermediaries. Future research should extend the study to other agricultural sectors and incorporate more diverse stakeholder perspectives to validate and generalise the proposed sustainable value network model.
Recent times have seen significant advancements in AI and NLP technologies, poised to revolutionize logistical decision-making across industries. This study investigates integrating ChatGPT, an advanced AI language model, into strategic, tactical, and operational logistics. Examining its applicability, benefits, and limitations, the study delves into ChatGPT’s capacity for strategic logistics planning, facilitating nuanced decision-making through natural language interactions. At the tactical level, it explores ChatGPT’s role in optimizing route planning and enhancing real-time decision support. The operational aspect scrutinizes ChatGPT’s capabilities in micro-level logistics and emergency response. Ethical implications, encompassing data security and human-AI trust dynamics, are also analyzed. This report furnishes valuable insights for the logistics sector, emphasizing AI’s potential in reshaping decision-making while underscoring the necessity for foresight, evaluation, and ethical considerations in AI integration. In this publication, it is assumed that ChatGPT is not entirely reliable for decision-making in the logistics field: at the strategic level, it can be effectively used for “brainstorming” in preparing decisions, but at the tactical and operational level, the depth of the knowledge is not sufficient to make appropriate decisions. Therefore, the answers provided by ChatGPT to the defined logistic tasks are compared with real logistic solutions. The article highlights ChatGPT’s effectiveness at different levels of logistics and clarifies its potential and limitations in the logistics field.
The present work conducts a comprehensive thermodynamic analysis of a 150 MWe Integrated Gasification Combined Cycle (IGCC) using Indian coal as the fuel source. The plant layout is modelled and simulated using the “Cycle-Tempo” software. In this study, an innovative approach is employed where the gasifier's bed material is heated by circulating hot water through pipes submerged within the bed. The analysis reveals that increasing the external heat supplied to the gasifier enhances the hydrogen (H2) content in the syngas, improving both its heating value and cold gas efficiency. Additionally, this increase in external heat favourably impacts the Steam-Methane reforming reaction, boosting the H2/CH4 ratio. The thermodynamic results show that the plant achieves an energy efficiency of 44.17% and an exergy efficiency of 40.43%. The study also identifies the condenser as the primary source of energy loss, while the combustor experiences the greatest exergy loss.
The power of Artificial Intelligence (AI) combined with the surgeons’ expertise leads to breakthroughs in surgical care, bringing new hope to patients. Utilizing deep learning-based computer vision techniques in surgical procedures will enhance the healthcare industry. Laparoscopic surgery holds excellent potential for computer vision due to the abundance of real-time laparoscopic recordings captured by digital cameras containing significant unexplored information. Furthermore, with computing power resources becoming increasingly accessible and Machine Learning methods expanding across various industries, the potential for AI in healthcare is vast. There are several objectives of AI’s contribution to laparoscopic surgery; one is an image guidance system to identify anatomical structures in real-time. However, few studies are concerned with intraoperative anatomy recognition in laparoscopic surgery. This study provides a comprehensive review of the current state-of-the-art semantic segmentation techniques, which can guide surgeons during laparoscopic procedures by identifying specific anatomical structures for dissection or avoiding hazardous areas. This review aims to enhance research in AI for surgery to guide innovations towards more successful experiments that can be applied in real-world clinical settings. This AI contribution could revolutionize the field of laparoscopic surgery and improve patient outcomes.
Delay is the leading challenge in completing Engineering, Procurement, and Construction (EPC) projects. Delay can cause excess costs, which reduces company profits. The relationship between subcontractors and the main contractor is a critical factor that can support the success of an EPC project. The problematic financial condition of the main contractor can cause delay in payments to subcontractors. This research will set a model that combines the system dynamics and earned value method to describe the impact of subcontractor advance payments on project performance. The system dynamics method is used to model and analyze the impact of interactions between variables affecting project performance, while the earned value method is applied to quantitatively evaluate project performance and forecast schedule and cost outcomes. These two methods are used complementarily to achieve a holistic understanding of project dynamics and to optimize decision-making. The designed model selects the optimum scenario for project time and costs. The developed model comprises project performance, costs, cash flow, and performance forecasting sub-models. The novelty in this research is a new model for optimizing project implementation time and costs, adding payment rate variables to subcontractors and subcontractor performance rates. The designed model can provide additional information to assist project managers in making decisions.
Copyright © by EnPress Publisher. All rights reserved.