The paper considers an important problem of the successful development of social qualities in an individual using machine learning methods. Social qualities play an important role in forming personal and professional lives, and their development is becoming relevant in modern society. The paper presents an overview of modern research in social psychology and machine learning; besides, it describes the data analysis method to identify factors influencing success in the development of social qualities. By analyzing large amounts of data collected from various sources, the authors of the paper use machine learning algorithms, such as Kohonen maps, decision tree and neural networks, to identify relationships between different variables, including education, environment, personal characteristics, and the development of social skills. Experiments were conducted to analyze the considered datasets, which included the introduction of methods to find dependencies between the input and output parameters. Machine learning introduction to find factors influencing the development of individual social qualities has varying dependence accuracy. The study results could be useful for both practical purposes and further scientific research in social psychology and machine learning. The paper represents an important contribution to understanding the factors that contribute to the successful development of individual social skills and could be useful in the development of programs and interventions in this area. The main objective of the research was to study the functionalities of the machine learning algorithms and various models to predict the students’s success in learning.
Indonesia, an emerging archipelagic nation, possesses abundant natural resources spanning marine, land (including forests and water sources), and diverse biological riches. The agricultural sector emerges as a pivotal driver of growth across the country, exhibiting extensive distribution. Consequently, there is an urgent imperative for comprehensive research to bolster and optimize the performance of this sector. This study aims to meticulously analyze and scrutinize macroeconomic variables aimed at enhancing Indonesia’s agricultural sector. Through the utilization of a dynamic panel model, the study zeroes in on crucial variables: economic growth in the agricultural sector, farmer terms of exchange, human development index, population density, inflation, average daily wages, and lagged economic growth data from each province in Indonesia. The best model for dynamic panel testing, employing both First Difference Generalized Method of Moments (FD-GMM) and Generalized Method of Moments System (SYS-GMM) approaches, is identified as the SYS-GMM model. This model exhibits unbiased and consistent estimation, as evidenced by the Arellano-Bond (AB) test and Sargan test results. The analysis conducted using this selected model reveals notable findings. Lagging agricultural sector performance, human capital measured by the Human Development Index (HDI), and farmers’ exchange rates are found to significantly and positively influence the economic growth of the agricultural sector. Conversely, inflation exerts a significant and negative impact on sectoral growth. However, wage levels and population density do not demonstrate a significant partial effect on the economic growth of the agricultural sector.
With the characteristics of resisting business cycle, mitigating cash flow, and improving portfolio resilience, special assets usually enter a highly active period in the economic downturn cycle, and gradually become an effective asset allocation means in the transition phase of the business cycle. This article aims to analyze the importance of the development of China's special asset investment industry in the context of high-quality economic development, and explore how to introduce market-oriented mechanisms to build primary and secondary markets for special assets, in order to improve the effective allocation of market resources and maximize returns.
Application-oriented universities play a vital role in transporting application-oriented talent to regional industries and industries. In this paper, we discuss the significance and path of building experimental centers for economic management in application-oriented universities and highlight their role in student learning, school-business cooperation and social development. At the same time, it summarizes the problems found during the construction of the experimental center at case University and suggests some improvements, which serve as a reference for the construction of economic management experimental centers at similar universities.
The global economic recession has caused pessimism in terms of prospects of sales recovering in the future. The present study is an attempt to investigate the cost stickiness behavior by focusing on specific characteristics of companies. The research was done through documentary analysis and access to quantitative data, with the use of statistical methods for analysis as panel data. The statistical population of the actual study included all companies listed on the India stock exchange from 2017 to 2021. They were selected after screening 128 listed companies. The regression method was used to examine the relationship between variables and to present a forecast model. The results of testing the first hypothesis showed that companies’ costs are sticky and according to the results of this hypothesis, an increase in costs when the level of activity increases is greater than the level of reduction in costs when the volumes of the activities are decreased. The results of the second hypothesis showed a remarkable relationship between the cost stickiness and specific characteristics of companies (size, number of employees, long-term assets, financial leverage, and accuracy of profits forecast). Based on the third hypothesis, there is a notable difference between cost stickiness at different levels of specific characteristics of companies. Therefore, the results show that environmental uncertainty such as COVID-19, increases cost stickiness.
This study considers the relationship between investment in the manufacturing and processing industries and economic growth in Vietnam. This study applies an autoregressive distributed lag (ARDL) model to reassess the long- and short-term relationships between industrial investment and economic growth from 1998 to 2023. It has been found that in both the long and short term, investments in this sector have a positive and significant effect on economic growth. The results further show that labor negatively affects growth in the long run, but is favorable in the short run. The verdict for the role of exports is that more evidence is required before any conclusive analysis can be conducted. Reinvestment in the manufacturing and processing industries for further economic growth is evident in the foregoing analysis. On the other hand, this research provides insight into the optimization of the utilization of resources and future sustainability by the government.
Copyright © by EnPress Publisher. All rights reserved.