Urbanization plays a crucial role in facilitating the integration of population growth, industrial development, economic expansion, and energy consumption. In this paper, we aim to examine the relationships between CO2 emissions and various factors including economic growth, urbanization, financial development, and energy consumption within Pakistan’s building sector. The study utilizes annual data spanning from 1990 to 2020. To analyze the cointegration relationship between these variables, we employ the quantile autoregressive distributed lag error correction model (QARDL-ECM). The findings of this research provide evidence supporting the presence of an asymmetric and nonlinear long-term relationship between the variables under investigation. Based on these results, we suggest the implementation of tariffs on nonrenewable energy sources and the formulation of policies that promote sustainable energy practices. By doing so, policymakers and architects can effectively contribute to minimising environmental damage. Overall, this study offers valuable insights that can assist policymakers and architects in making informed decisions to mitigate environmental harm while fostering sustainable development.
Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest ecosystems on a large scale. This review article explores the latest advancements in remote sensing tools that leverage optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We investigate how these tools, combined with artificial intelligence (AI) techniques and cloud-computing facilities, enhance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote sensing and AI to revolutionize forest management and conservation practices.
[Objective]In order to explore the sustainable food security level in the Yangtze River Economic Belt, ensure food security and sustainable development of agricultural modernization, it is necessary to establish a scientific food security evaluation system to safeguard local food security.[Methods]This paper takes the food system of the Yangtze River Economic Belt in China as the research object, based on the food security research results at home and abroad, based on sustainable development thinking, combined with a new perspective of dynamic equilibrium research: Beginning with food normalcy, a comprehensive analysis of food production, food economy, social development, ecological security, and technical support for sustainable development is presented using the entropy-weighted TOPSIS model to build a food security evaluation system for sustainable development. [Conclusion]After systematic analysis, it is concluded that (1) the average value of food security score of the Yangtze River Economic Belt from 2008 to 2021 is 0.429, and the overall food in the Yangtze River Economic Belt is in general security level (0.400 ≤ Q1 ≤ 0.600), and the overall situation of food security is not optimistic, (2) from the segmentation of the Yangtze River Economic Belt, the high and low level of food security are divided into sections: midstream > downstream > upstream, and each province and city is slowly rising to different degrees. In this way, we propose general countermeasures to ensure local food security from the perspective of sustainable development.
During and after any disaster, a situation report (SITREP) is prepared, based on the Daily Incident Updates (DIU), as an initial decision support information base. It is observed that the decision support system and best practices are not optimized through the available formal reporting on disaster incidents. The rapidly evolving situation, misunderstood terms, inaccurate data and delivery delays of DIU are challenges to the daily SITREP. Multiple stakeholders stipulated with different tasks should be properly understood for the SITREP to initiate relevant response tasks. To fill this research gap, this paper identifies the weaknesses of the current practice and discusses the upgrading of the incident-reporting process using a freely available software tool, enabling further visualization, and producing a comprehensive timely output to share among the stakeholders. In this case, “Power-BI” (a data visualization software) is used as a 360-degree view of useful metrics—in a single place, with real-time updates while being available on all devices for operational decision-making. When a dataset is transformed into several analytical reports and dashboards, it can be easily shared with the target users and action groups. This article analyzed two sources of data, namely the Disaster Management Center (DMC) and the National Disaster Relief Service Center (NDRSC) of Sri Lanka. Senior managers of disaster emergencies were interviewed and explored social media to develop a scheme of best practices for disaster reporting, starting from just before the occurrence, and following the unfolding sequence of the disasters. Using a variety of remotely acquired imageries, rapid mapping, grading, and delineating impacts of natural disasters, were made available to concerned users.
Urban morphologies in the global south are shaped by a complex interplay of historical imprints, from colonial legacies and ethnic tensions to waves of modernization and decolonization efforts. This study delves into the urban morphology of Hangzhou during the late 19th and early 20th centuries, unraveling its transformative patterns steered by a convergence of spatial politics, economic forces, and cultural dynamics. Drawing upon a unique blend of historical map restoration techniques, we unearth pivotal morphological nuances that bridge Hangzhou’s transition from its pre-modern fabric to its modern-day urban layout. We uncover key shifts such as the movement from intricate street layouts to systematic grids, the strategic integration of public spaces like West Lakeside Park, and the city’s evolving urban epicenter mirroring its broader socio-political and economic narratives. These insights not only spotlight Hangzhou’s distinct urban journey in the context of ethnic conflicts, Western influences, and decolonization drives but also underscore the value of context-sensitive urban morphological research in the global south. Our findings emphasize the criticality of synergizing varied methodologies and theoretical perspectives to deepen our comprehension of urban transitions, sculpt place identities, and invigorate public imagination in global urban planning.
To gain a deep understanding of maintenance and repair planning, investigate the weak points of the distribution network, and discover unusual events, it is necessary to trace the shutdowns that occurred in the network. Many incidents happened due to the failure of thermal equipment in schools. On the other hand, the most important task of electricity distribution companies is to provide reliable and stable electricity, which minimal blackouts and standard voltage should accompany. This research uses seasonal time series and artificial neural network approaches to provide models to predict the failure rate of one of the equipment used in two areas covered by the greater Tehran electricity distribution company. These data were extracted weekly from April 2019 to March 2021 from the ENOX incident registration software. For this purpose, after pre-processing the data, the appropriate final model was presented with the help of Minitab and MATLAB software. Also, average air temperature, rainfall, and wind speed were selected as input variables for the neural network. The mean square error has been used to evaluate the proposed models’ error rate. The results show that the time series models performed better than the multi-layer perceptron neural network in predicting the failure rate of the target equipment and can be used to predict future periods.
Copyright © by EnPress Publisher. All rights reserved.