Service composition enables the integration of multiple services to create new functionalities, optimizing resource utilization and supporting diverse applications in critical domains such as safety-critical systems, telecommunications, and business operations. This paper addresses the challenges in comparing load-balancing algorithms within service composition environments and proposes a novel dynamic load-balancing algorithm designed specifically for these systems. The proposed algorithm aims to improve response times, enhance system efficiency, and optimize overall performance. Through a simulated service composition environment, the algorithm was validated, demonstrating its effectiveness in managing the computational load of a BMI calculator web service. This dynamic algorithm provides real-time monitoring of critical system parameters and supports system optimization. In future work, the algorithm will be refined and tested across a broader range of scenarios to further evaluate its scalability and adaptability. By bridging theoretical insights with practical applications, this research contributes to the advancement of dynamic load balancing in service composition, offering practical implications for high-tech system performance.
Interest in the impact of environmental innovations on firms’ financial performance has surged over the past two decades, but studies show inconsistent results. This paper addresses these divergences by analyzing 74 studies from 1996 to 2022, encompassing 4,390,754 firm-year observations. We developed a probability-based meta-analysis approach to synthesize existing knowledge and found a generally positive impact of environmental innovations on financial performance, with a probability range of 0.85 to 0.97. Manufacturing firms benefit more from environmental innovations than firms in other industries, and survey-based studies report a more favorable relationship than those using secondary data. This study contributes to existing knowledge by providing a comprehensive aggregation of data, supporting the resource-based view (RBV) and the Porter hypothesis. The findings suggest significant policy implications, highlighting the need for tailored incentives and information-sharing mechanisms, and underscore the importance of diverse data sources in research to ensure robust results.
As the involvement of Chinese enterprises in cross-border mergers and acquisitions (M&A) increases, on the one hand, it can drive enterprises to integrate with the international community and accelerate their transformation and upgrading, continuously enhancing their international competitiveness; on the other hand, it will also cause enterprises to experience more setbacks and challenges, especially the “weak acquisition of the strong” reverse cross-border acquisitions, which makes enterprises face a higher risk of failure. Reasonable control rights allocation can fully utilize the competitive advantages of enterprises, achieve synergistic cooperation among shareholders, board of directors, and management, promote the realization of enterprises’ cross-border acquisition goals, and thus enhance the value creation of acquisitions. There is a positive correlation between internal legitimacy and acquisition performance; the relevant assumptions about the distribution of shareholder control rights are invalid; the control rights at the board of directors level are negatively correlated with internal legitimacy and acquisition performance, and internal legitimacy has a mediating effect between the control rights at the board of directors level and acquisition performance, but the moderating effect of the acquisition mode is not significant; the control rights at the management level are negatively correlated with internal legitimacy and acquisition performance, and internal legitimacy has a mediating effect between the control rights at the management level and acquisition performance, and the acquisition mode negatively moderates the relationship between the control rights at the management level and internal legitimacy. This study takes the post-acquisition control rights allocation as the entry point, and examines the cross-border acquisition activities of Chinese enterprises from the perspective of stakeholders. The research results not only can enrich existing acquisition theory, but also can provide theoretical guidance for Chinese enterprise managers on allocation of control of target enterprises, and provide a theoretical basis for the state to formulate and optimize the system and policies of enterprises’ cross-border acquisitions.
The study examined the mediating role of supply chain security performance on the relationship between supply chain security practices and supply chain disruptions occurrences in the manufacturing industry in Ghana. Drawing on a survey of 336 manufacturing firms, dynamic capability, and contingency theories were applied using structural equation modeling (SEM) to test the conceptual model. It was discovered that both direct and indirect hypotheses supported the findings of the study. The results indicate that Ghanaian manufacturing firms have made progress in implementing supply chain security measures. The findings revealed that the adoption of comprehensive supply chain security practices is positively associated with improved performance metrics, including reduced inventory losses and damages, faster order fulfillment and delivery times, lower costs related to security incidents, and enhanced brand reputation and customer trust. Policymakers can leverage these insights to develop support programs aimed at strengthening the security capabilities of manufacturing firms, ensuring they are equipped to compete effectively in both local and global markets, improving security performance, and reducing the likelihood and impact of supply chain disruptions. In the quest of bridging the gap between theory and practice, this research contributes valuable knowledge to the discourse on supply chain security in developing countries, offering a roadmap for enhancing resilience and performance in the manufacturing sector.
This study conducts a comparative analysis of various machine learning and deep learning models for predicting order quantities in supply chain tiers. The models employed include XGBoost, Random Forest, CNN-BiLSTM, Linear Regression, Support Vector Regression (SVR), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), Conv1D-BiLSTM, Attention-LSTM, Transformer, and LSTM-CNN hybrid models. Experimental results show that the XGBoost, Random Forest, CNN-BiLSTM, and MLP models exhibit superior predictive performance. In particular, the XGBoost model demonstrates the best results across all performance metrics, attributed to its effective learning of complex data patterns and variable interactions. Although the KNN model also shows perfect predictions with zero error values, this indicates a need for further review of data processing procedures or model validation methods. Conversely, the BiLSTM, BiGRU, and Transformer models exhibit relatively lower performance. Models with moderate performance include Linear Regression, RNN, Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN hybrid model, all displaying relatively higher errors and lower coefficients of determination (R²). As a result, tree-based models (XGBoost, Random Forest) and certain deep learning models like CNN-BiLSTM are found to be effective for predicting order quantities in supply chain tiers. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer show relatively lower predictive power. Based on these results, we suggest that tree-based models and CNN-based deep learning models should be prioritized when selecting predictive models in practical applications.
This study aimed at measuring the level of job burnout among King Khalid University staff. The descriptive-analytical approach was employed to describe job burnout, determine its prevalence, identify its causes, and propose ways to address it. This method was used for comparison, interpretation, and generating information to assist in understanding the phenomena of job burnout and to devise recommendations for mitigating its prevalence. The results showed that the overall mean estimation of the dimensions of the level of occupational burnout from the perspective of university staff was (2.28), with a standard deviation of (0.81), indicating a low degree. The arithmetic means of the study sample responses to the dimensions ranged from (1.98–2.66). This provides a good indicator of the prevalence of occupational burnout. The findings showed that individuals in higher ranks experience higher levels of job burnout compared to the rest of the ranks classified in the study.
Copyright © by EnPress Publisher. All rights reserved.