To address the escalating online romance scams within telecom fraud, we developed an Adaptive Random Forest Light Gradient Boosting (ARFLGB)-XGBoost early warning system. Our method involves compiling detailed Online Romance Scams (ORS) incident data into a 24-variable dataset, categorized to analyze feature importance with Random Forest and LightGBM models. An innovative adaptive algorithm, the Adaptive Random Forest Light Gradient Boosting, optimizes these features for integration with XGBoost, enhancing early Online romance scams threat detection. Our model showed significant performance improvements over traditional models, with accuracy gains of 3.9%, a 12.5% increase in precision, recall improvement by 5%, an F1 score increase by 5.6%, and a 5.2% increase in Area Under the Curve (AUC). This research highlights the essential role of advanced fraud detection in preserving communication network integrity, contributing to a stable economy and public safety, with implications for policymakers and industry in advancing secure communication infrastructure.
Terms and Conditions are always encountered when using social media applications to determine which data can be accessed and what cannot. However, there are shortcomings in their implementation and communication, often causing users to be unwilling to read them. Therefore, this study aimed to analyze the effectiveness of implementing partial consent in Terms and Conditions concerning user Data Awareness and Data Security in social media. This Paper administered a questionnaire, distributed with a form, to students who use social media to understand their opinions regarding the partial consent concept. This paper analyzed the data using descriptive statistical methods. The results show a positive response from respondents towards implementing the partial consent concept, the users feel the terms and conditions are more effective in increasing user data awareness and security.
The digital era has transformed education, making digital literacy essential for teachers to integrate technology and enhance student outcomes effectively. This study aims to examine how school culture influences teachers’ performance through their digital literacy, focusing on junior high school teachers in Malang City, East Java, Indonesia. Employing a quantitative approach, data were collected from 214 teachers out of a 457 population using questionnaires. The analysis was conducted through AMOS for Confirmatory Factor Analysis (CFA), SPSS for descriptive statistics, and PLS-SEM for hypothesis testing. The findings reveal that school culture significantly affects teachers’ digital literacy (Ho1) and teacher performance (Ho2) with supportive and innovative environments, while rigid cultures limit creativity. Furthermore, digital literacy was found to enhance teachers’ performance (Ho3) and mediate the impact of school culture on teachers’ performance (Ho4), enhancing teachers’ effectiveness in planning, implementing, and evaluating instruction. This study highlights the critical role of school culture in shaping digital literacy and offers new insights for improving teacher practices in diverse educational settings. Moreover, the role of education policies in fostering a collaborative school culture that enhances teachers’ digital literacy and performance, leading to improved educational outcomes, plays a crucial implication.
The Human Development Index, which accounts for both net foreign income and the total value of goods and services generated domestically, illustrates how income becomes less significant as Gross National Income (GNI) rises by using the logarithm of income. South Africa ranks 109th out of 189 countries in the Human Development Index (HDI) within the Brazil, Russia, India, China and South Africa (BRICS) economic bloc, raising long-term sustainability concerns. The study explores the relationship between economic, demography, policy indicators and human development in South Africa. South Africa’s unique status as a developing country within the BRICS economic group, alongside its lengthy history of racial discrimination, calls for a sophisticated approach to understanding Human Development. Existing research considered economic, demography, policy indicators independently; the gap of understanding their interconnection and long-term effects in the South African contexts exists. The study addresses the gap by using Autoregressive-Distributed Lag (ARDL) approach to investigate the short-term and the long-term relationship between economic, demography, policy indicators and human development in South Africa. By discovering these links, the study hopes to provide useful insights for policymakers seeking to promote sustainable human development in South Africa. The findings indicate that growth in GDP is a key factor in the HDI since it shows that there are more financial resources available for human development. By discovering these links, the study hopes to provide useful insights for policymakers seeking to promote sustainable human development in South Africa.
Adequate sanitation is crucial for human health and well-being, yet billions worldwide lack access to basic facilities. This comprehensive review examines the emerging field of intelligent sanitation systems, which leverage Internet of Things (IoT) and advanced Artificial Intelligence (AI) technologies to address global sanitation challenges. The existing intelligent sanitation systems and applications is still in their early stages, marked by inconsistencies and gaps. The paper consolidates fragmented research from both academic and industrial perspectives based on PRISMA protocol, exploring the historical development, current state, and future potential of intelligent sanitation solutions. The assessment of existing intelligent sanitation systems focuses on system detection, health monitoring, and AI enhancement. The paper examines how IoT-enabled data collection and AI-driven analytics can optimize sanitation facility performance, predict system failures, detect health risks, and inform decision-making for sanitation improvements. By synthesizing existing research, identifying knowledge gaps, and discussing opportunities and challenges, this review provides valuable insights for practitioners, academics, engineers, policymakers, and other stakeholders. It offers a foundation for understanding how advanced IoT and AI techniques can enhance the efficiency, sustainability, and safety of the sanitation industry.
In the context of contemporary global challenges such as the COVID-19 pandemic, geopolitical conflicts, and climate change, food security assumes particular significance, being an integral part of national security. This study aims to investigate the interplay between food security and national security systems, with a focus on identifying gaps in the literature and determining directions for further research. The study conducted a systematic literature review on food security and national security systems employing a rigorous and transparent process. The qualitative analysis is grounded in the quantitative one, encompassing studies from Scopus. The examination of the selected peer-reviewed articles revealed several methodological and thematic limitations in existing research: i Geographic imbalance: There is a predominant focus on developed countries, while food security issues in developing countries remain insufficiently studied; ii Insufficient explication: There is a lack of research dedicated to managerial and economic aspects of food security in the context of national security; iii Methodological constraints: There is a predominance of quantitative methods and retrospective/cross-sectional studies. Recommendations include developing comprehensive strategies at both global and national levels to enhance food stability and accessibility.
Copyright © by EnPress Publisher. All rights reserved.