This study investigates the influence of Environmental, Social, and Governance Disclosures (ESGD) on the profitability of firms, using a sample of 385 publicly listed companies on the Thai Stock Exchange. Data from 2018 to 2022 is sourced from the Bloomberg database, focusing on ESGD scores as indicators of companies’ ESG commitments. The study utilizes a structural equation model to examine the relationships between independent variables; ESGD, Earnings Per Share (EPS), Debt to Assets ratio (DA), Return on Investment Capital (ROIC), Total Assets (TA), and dependent variables Tobin’s Q (TBQ) and Return on Assets (ROA). The analysis reveals a positive relationship between ESGD and TBQ, but not with ROA. Further exploration is conducted to determine if different ESGD levels (high, medium, low) yield consistent effects on TBQ. The findings indicate discrepancies: high and medium ESGD levels are associated with a negative impact on TBQ when EPS increased, whereas low ESGD levels correlate with an increase in TBQ with rising EPS. This nuanced approach challenges the conventional uniform treatment of ESGD in previous research and provides a deeper understanding of how varying commitments to ESG practices affect a firm’s market valuation and profitability. These insights are crucial for firm management, highlighting the importance of ESGD in relation to other financial variables and their effects on market value. This study offers a new perspective on ESGD’s impact, emphasizing the need for differentiated strategies based on ESG commitment levels.
This study employed the theory of planned behavior to examine how green urban spaces influence walking behaviors, with a focus on Chongqing’s Jiefangbei Pedestrian Street. Using structural equation modelling to analyse survey data from 401 respondents, this study assessed the relationships between attitudes, subjective norms, perceived behavioral control, walking intentions, and actions. The results revealed that attitudes toward walking (β = 0.335, p < 0.001) and subjective norms (β = 0.221, p < 0.001) significantly predict walking intentions, which strongly determine actual walking behavior (β = 0.379, p < 0.001). Moreover, perceived behavioral control exerts a direct significant impact on walking actions (β = 0.332, p < 0.001), illustrating that both environmental and social factors are crucial in promoting pedestrian activity. These findings suggest that enhancing the appeal and accessibility of urban green spaces can significantly encourage walking, providing valuable insights for urban planning and public health policy. This study can guide city planners and health professionals in creating more walkable and health-conducive urban environments.
This research explores the factors influencing consumers’ intentions and behaviors toward purchasing green products in two culturally and economically distinct countries, Saudi Arabia and Pakistan. Drawing on Ajzen’s Theory of Planned Behavior (TPB), the study examines the roles of altruistic and egoistic motivations, alongside environmental knowledge, in shaping green consumer behavior. Altruistic motivation, driven by concern for societal well-being and environmental sustainability, is found to have a stronger impact on green purchase intention and behavior in both countries, particularly in Pakistan. Egoistic motivation, which focuses on personal benefits like health and cost savings, also contributes but with a lesser influence. The research employs a cross-sectional survey design, collecting data from 1000 respondents (500 from each country) using a stratified random sampling technique. The collected data were analyzed using structural equation modeling (SEM) to examine the relationships between variables and test the moderating effects of environmental knowledge. The results reveal that environmental knowledge significantly moderates the effect of both altruistic and egoistic motivations on green purchase intention, enhancing the likelihood of eco-friendly consumption. These findings underscore the importance of environmental education in promoting sustainable consumer behavior. The originality of this study lies in its comparative analysis of green consumerism in two distinct contexts and its exploration of motivational factors through the TPB framework. Practical implications suggest that policymakers and marketers can develop strategies that appeal to both altruistic and egoistic drivers while enhancing consumer knowledge of environmental issues. The study contributes to the literature by expanding TPB to include the moderating role of environmental knowledge in understanding green consumption behavior across diverse cultures.
Tangerang City is characterized by its dense residential, commercial, and industrial activities and strategic proximity to Jakarta. This study aims to evaluate the strategic planning and implementation of innovative city initiatives in Tangerang, Indonesia, focusing on integrating blockchain, Internet of Things (IoT) big data technologies and innovation in urban development. This study has employed explanatory survey data from a structured questionnaire distributed to a diverse Tangerang community sample, including users and non-users of the “Smart City Tangerang Live” application. The survey was conducted for 2-months March to April 2022, included 71 and the sample included individuals across 13 districts, utilizing cluster sampling to ensure representativeness. The findings reveal a positive community response towards the smart city initiatives, with significant Engagement and interaction with the “Tangerang Live” application. However, technology access and usage disparities among different community segments were noted. The study highlights the critical role of intelligent technologies in transforming urban infrastructure and services, improving the quality of life, and fostering sustainable urban development in Tangerang. The implications of this study are multifaceted. For urban planners and policymakers, the results underscore the importance of strategic planning in innovative city development, emphasizing the need for inclusive and accessible technological solutions. The study also suggests potential areas for improvement in community engagement and public awareness campaigns to promote the adoption and efficient use of smart technologies.
We present an interdisciplinary exploration of technostress in knowledge-intensive organizations, including both business and healthcare settings, and its impact on a healthy working life. Technostress, a contemporary form of stress induced by information and communication technology, is associated with reduced job satisfaction, diminished organizational commitment, and adverse patient care outcomes. This article aims to construct an innovative framework, called The Integrated Technostress Resilience Framework, designed to mitigate technostress and promote continuous learning within dynamic organizational contexts. In this perspective article we incorporate a socio-technical systems approach to emphasize the complex interplay between technological and social factors in organizational settings. The proposed framework is expected to provide valuable insights into the role of transparency in digital technology utilization, with the aim of mitigating technostress. Furthermore, it seeks to extend information systems theory, particularly the Technology Acceptance Model, by offering a more nuanced understanding of technology adoption and use. Our conclusion includes considerations for the design and implementation of information systems aimed at fostering resilience and adaptability in organizations undergoing rapid technological change.
The idea of emotions that is concealed in human language gives rise to metaphor. It is challenging to compute and develop a framework for emotions in people because of its detachment and diversity. Nonetheless, machine translation heavily relies on the modeling and computation of emotions. When emotion metaphors are calculated into machine translation, the language is significantly more colorful and satisfies translating criteria such as truthfulness, creativity and beauty. Emotional metaphor computation often uses artificial intelligence (AI) and the detection of patterns and it needs massive, superior samples in the emotion metaphor collection. To facilitate data-driven emotion metaphor processing through machine translation, the study constructs a bi-lingual database in both Chinese and English that contains extensive emotion metaphors. The fundamental steps involved in generating the emotion metaphor collection are demonstrated, comprising the basis of theory, design concepts, acquiring data, annotating information and index management. This study examines how well the emotion metaphor corpus functions in machine translation by proposing and testing a novel earthworm swarm-tunsed recurrent network (ES-RN) architecture in a Python tool. Additionally, the comparison study is carried out using machine translation datasets that already exist. The findings of this study demonstrated that emotion metaphors might be expressed in machine translation using the emotion metaphor database developed in this research.
Copyright © by EnPress Publisher. All rights reserved.