Energy shortages and environmental damage have become serious problems facing the society today. Biomass can be a renewable energy source, which large-scale development and utilization are of great significance to industry and social life. Biomass pyrolysis technology can achieve effective utilization of biomass energy. It is necessary to optimize the pyrolysis reaction technology and device for realize the industrialization and large-scale production of biomass energy.
Six Sigma is an organized and systematic method for strategic process improvement that relies on statistical and scientific methods to reduce the defect rates and achieve significant quality up-gradation. Six Sigma is also a business philosophy to improve customer satisfaction, a tool for eliminating process variation and errors and a metric of world class companies allowing for process comparisons. Six Sigma is one of the most effective advanced improvement strategies which has direct impact on operational excellence of an organization. Six Sigma may also be defined as the powerful business strategies, which have helped to improve quality initiatives in many industries around the world. With the use of Six Sigma in casting industries, rejection rate is reduced, customer satisfaction is improved and financial benefits also increased. Six Sigma management uses statistical process control to relentlessly and rigorously pursue the reduction of variation in all critical processes to achieve continuous and breakthrough improvements that impact the bottom-line and/or top-line of the organization and increase customer satisfaction. In this paper author reviewed some of the significant previous published papers and focused on the general overview of publication in casting industries.
Nanocomposites are high performance materials which reveal rare properties. Nanocomposites have an estimated annual growth rate of 25% and fastest demand to be in engineering plastics and elastomers. Their prospective is so prominent that they are valuable in numerous areas ranging from packaging to biomedical applications. In this review, the various types of matrix nanocomposites are discussed highlighting the need for these materials, their processing approaches and some recent results on structure, properties and potential applications. Perspectives include need for such future materials and other interesting applications. Being environmentally friendly, applications of nanocomposites propose new technology and business opportunities for several sectors of the aerospace, automotive, electronics and biotechnology industries.
The Nevado de Toluca Flora and Fauna Protection Area presents a constant fragmentation of its forests. The objective of the research was to identify the processes of forest deterioration and the role of local stakeholders in its conservation. Geographic information systems were used as a basis for the generation of thematic maps, in addition to the application of a flow diagram that defines the problems of the forest and another that describes and analyzes them for the search of solutions. The results show that the main factors affecting deterioration are forest fires, immoderate logging, pests and diseases. Finally, strategies and scenarios for forest management are proposed based on the articulation of local stakeholders.
Diamond-like Nanocomposites (DLN) is a newly member in amorphous carbon (a:C) family. It consists of two or more interpenetrated atomic scale network structures. The amorphous silicon oxide (a:SiO) is incorporated within diamond-like carbon (DLC) matrix i.e. a:CH and both the network is interpenetrated by Si-C bond. Hence, the internal stress of deposited DLN film decreases remarkably compare to DLC. The diamond-like properties have come due to deform tetrahedral carbon with sp3 configuration and high ratio of sp3 to sp2 bond. The DLN has excellent mechanical, electrical, optical and tribological properties. Those properties of DLN could be varied over a wide range by changing deposition parameters, precursor and even post deposition treatment also. The range of properties are: Resistivity 10-4 to 1014 Ωcm, hardness 10–22 GPa, coefficient of friction 0.03-0.2, wear factor 0.2-0.4 10-7mm3/Nm, transmission Vis-far IR, modulus of elasticity 150-200 GPa, residual stress 200-300 Mpa, dielectric constant 3-9 and maximum operating temperature 600°C in oxygen environment and 1200°C in O2 free air. Generally, the PECVD method is used to synthesize the DLN film. The most common procedures used for investigation of structure and composition of DLN films are Raman spectroscopy, Fourier transformed infrared spectroscopy (FTIR), HRTEM, FESEM and X-ray photo electron spectroscopy (XPS). Interest in the coating technology has been expressed by nearly every industrial segment including automotive, aerospace, chemical processing, marine, energy, personal care, office equipment, electronics, biomedical and tool and die or in a single line from data to beer in all segment of life. In this review paper, characterization of diamond-like nanocomposites is discussed and subsequently different application areas are also elaborated.
The objective of this work was to evaluate the effect of potassium concentrations applied via fertigation on the growth, yield and chemical composition of eggplant ‘Ciça’ in a distroferric red Latosol. The treatments were composed of five concentrations of K2O (0, 36, 72, 108 and 144 kg ha-1 supplied via fertigation), using potassium chloride as a source, divided into six applications. The irrigation system was of the drip type and irrigation management was done via a “Class A” evaporometer tank. Harvest started at 62 days after transplanting (DAT) and lasted for five months. The variables evaluated were: plant height, number of leaves, fresh fruit mass, number of fruits per plant, yield per plant, productivity and classification of the fruits according to their length and diameter. At 85 DAT, fruit were collected for characterization as to the percentage of lipids, proteins and fibers. Although the potassium fertigation in cover provided a reduction in the production and productivity, the concentrations of 36 kg ha-1 and 72 kg ha-1 of K2O applied via fertigation, increased the physical-chemical characteristics of the fruits.
Copyright © by EnPress Publisher. All rights reserved.