This study investigates the influence of perceived value and perceived risk on consumer intentions to purchase counterfeit luxury goods, drawing upon an integrated theoretical framework encompassing perceived value theory, risk perception theory, and consumer behavior models. Through a quantitative research design involving a structured survey and Structural Equation Modeling (SEM), the study examines the relationships among perceived value dimensions (functional, emotional, social, economic), perceived risk factors (financial, social, performance), consumer attitudes, and purchase intentions. The findings reveal that perceived value positively influences purchase intentions, with consumer attitudes acting as a critical mediating mechanism. Conversely, perceived risk negatively impacts purchase intentions, with this relationship also mediated by consumer attitudes. Furthermore, Bayesian Network analysis uncovers the indirect pathways through which perceived risk shapes purchase intentions via its influence on consumer attitudes. By integrating these theoretical frameworks and employing advanced analytical techniques, this study contributes to a comprehensive understanding of the complex decision-making processes underlying counterfeit luxury goods consumption. The findings provide valuable insights for policymakers, luxury brand managers, and consumer protection agencies in devising targeted strategies to address consumer perceptions of value and risk, ultimately mitigating the proliferation of counterfeit luxury goods.
This research aims to solve the research problems regarding the most important value of an object in the form of the wedangan phenomenon. This research objectives to expose the superiority of the communities’ food consumption tradition in the form of wedangan. This research belongs to a qualitative study and uses ethnomethodology as an initial approach. It is because the initial data findings are in the form of an indexical conversation that explicitly refers to the concept of wedangan. The concept refers to wedangan in real life, which is in the form of eating and drinking activities while chatting. The research findings are: 1) the most profound structure of wedangan’s tradition is food provision and food eating; 2) wedangan accommodates three forms (food stall, street food, and restaurant); 3) wedangan also accommodates three food values (delightful, useful, and meritorious); and 4) there is an egalitarian consumption pattern in wedangan, people regardless their social class visiting the same place, eat the same food, being simple and be ordinary (or usually we call it as food marriage). Wedangan is a social activity with advantages from a social, economic, and political perspective. Therefore, this phenomenon requires more serious attention from the government.
Introduction: New energy vehicles (NEVs) refer to automobiles powered by alternative energy sources to reduce reliance on fossil fuels and mitigate environmental impacts. They represent a sustainable transportation solution, aligning with global efforts to promote energy efficiency in the automotive sector. Aim: The purpose of this research is to investigate the influence of social demand on the business model of NEVs. Through a comprehensive analysis of consumer preferences and market dynamics, the research aims to identify strategies for driving the sustainable growth of the NEV industry in respond to societal demands. Research methodology: We conduct a questionnaire survey on 2415 individuals and evaluated that questionnaire data by multifactor analysis of variance to examine individual consumer characteristics. We employed NOVA to evaluate the differences in market penetration factors. Additionally, a regression analysis model is utilized to examine accessibility element’s effects on the consumer’s intensions to buy, addressing categorical and ordered data requirements effectively. Research findings: This research demonstrates that middle-aged and adolescent demographics show the highest willingness to purchase NEV’s, particularly emphasizing technological advancements. Consumer preferences vary based on focus like NEV type, model and brand, necessitating tailored marketing strategies. Conclusion: Improving perception levels and addressing charging convenience and innovative features are vital for enhancing market penetration and sustainable business growth in the NEV industry.
State-owned enterprises (SOEs) manage significant portion of world economy, including in the developing countries. SOEs are expected to be active and play significant role in improving the country’s economic performance and welfare through enhancing innovation performance. However, closed innovation process and lack of collaboration hinders SOEs to reach satisfying innovation performance level. This paper explores the construction and role of innovation ecosystem in the strategic entrepreneurship process of SOEs, of which is represented by dynamic capability framework, business model innovation, and collaborative advantage. Based on the analysis, this paper concluded that the collaboration between actors in the Innovation Ecosystem (IE) has positive effect to strengthening SOE’s Sensing Capabilities (SC) related to the process of exploring and identifying innovation opportunities. The increase of Sensing Capabilities (SC) will play significant role as input or antecedent on formulating proactive Innovation Strategy (IS) in orchestrating SOE’s innovation process. SOEs which has implementing proactive Innovation Strategy (IS) will be able to build collaboration and finding right Business Model Innovation (BMI). Finally, by building collaboration with other actors through the innovative business model has significant role to increase SOE’s Collaborative Advantage (CA), which considered as a proxy for competitiveness of SOEs.
This paper focuses on the analysis of educational institutions’ communication on social media, with an emphasis on the individual type of content used by these institutions to increase engagement and interaction with current and potential students. The authors examine how educational institutions tailor their communication content on Facebook and Instagram to meet the expectations and needs of their target audience. The analysis includes content evaluation, frequency of posts, user interaction, and integration of multimedia elements. In our research we focused on private school segment from kindergartens, through primary to secondary schools. The paper also presents an analysis of the differences of communication on different platforms (Facebook and Instagram) and their impact on the digital communication strategy of private schools. The results suggest that despite the increasing popularity of Instagram and higher interaction, educational institutions are communicating more on Facebook.
Accurate drug-drug interaction (DDI) prediction is essential to prevent adverse effects, especially with the increased use of multiple medications during the COVID-19 pandemic. Traditional machine learning methods often miss the complex relationships necessary for effective DDI prediction. This study introduces a deep learning-based classification framework to assess adverse effects from interactions between Fluvoxamine and Curcumin. Our model integrates a wide range of drug-related data (e.g., molecular structures, targets, side effects) and synthesizes them into high-level features through a specialized deep neural network (DNN). This approach significantly outperforms traditional classifiers in accuracy, precision, recall, and F1-score. Additionally, our framework enables real-time DDI monitoring, which is particularly valuable in COVID-19 patient care. The model’s success in accurately predicting adverse effects demonstrates the potential of deep learning to enhance drug safety and support personalized medicine, paving the way for safer, data-driven treatment strategies.
Copyright © by EnPress Publisher. All rights reserved.