In today’s rapidly evolving world, the integration of artificial intelligence (AI) technologies has become paramount, offering unparalleled value propositions and unparalleled consumer experiences. This study delves into the transformative impact of five AI activities on brand experience and consumer-based brand equity within the retail banking landscape of Lebanon. Employing a quantitative deductive approach and a sample of 211 respondents, the research employs structural equation modeling to analyze the data. The findings underscore the significant influence of four AI marketing activities on brand experience, revealing that factors such as information, accessibility, and customization play pivotal roles, while interaction has a less pronounced effect. Importantly, the study unveils that brand experience acts as a partial mediator between AI marketing activities and consumer-based brand equity. These revelations not only illuminate pathways for retail banks in Lebanon to refine their AI strategies but also underscore the importance of leveraging AI-driven marketing initiatives to bolster customer equity, acquisition, and retention efforts in an increasingly competitive market age.
This study explores the integration of data mining, customer relationship management (CRM), and strategic management to enhance the understanding of customer behavior and drive revenue growth. The main goal is the use of application of data mining techniques in customer analytics, focusing on the Extended RFM (Recency, Frequency, Monetary Value and count day) model within the context of online retailing. The Extended RFM model enhances traditional RFM analysis by incorporating customer demographics and psychographics to segment customers more effectively based on their purchasing patterns. The study further investigates the integration of the BCG (Boston Consulting Group) matrix with the Extended RFM model to provide a strategic view of customer purchase behavior in product portfolio management. By analyzing online retail customer data, this research identifies distinct customer segments and their preferences, which can inform targeted marketing strategies and personalized customer experiences. The integration of the BCG matrix allows for a nuanced understanding of which segments are inclined to purchase from different categories such as “stars” or “cash cows,” enabling businesses to align marketing efforts with customer tendencies. The findings suggest that leveraging the Extended RFM model in conjunction with the BCG matrix can lead to increased customer satisfaction, loyalty, and informed decision-making for product development and resource allocation, thereby driving growth in the competitive online retail sector. The findings are expected to contribute to the field of Infrastructure Finance by providing actionable insights for firms to refine their strategic policies in CRM.
This paper aims to segment online consumers based on their attitude toward self-interest and ethical attitudes and explore the impact of these attitudes on the purchasing behavior of agricultural products online in China. The study was conducted using 633 online survey responses from consumers who have purchased agricultural products online in China. First, to validate the relationship between attitude and behavior by structural equation modeling. Next, the number of segments was determined using K-means. Finally, Pearson Chi-square difference tests were performed to analyze demographic and behavioral variables and identify each segment’s characteristics. The results of this study provide a segmentation analysis of the online market for agricultural products in China. The four segments identified are pure ethical consumers, information communicators, brand-quality pursuers, and well-heeled shoppers. Additionally, this study reveals the characteristics of each segment based on demographic and behavioral variables. This study provides a novel approach to segmenting Chinese consumers who purchase agricultural products online based on their attitudes toward self-interest and ethical attitudes, aiming to understand the impact of these attitudes on their purchasing behavior. Moreover, from an ethical consumerism perspective, it explores the effect of ethical information on purchasing agricultural products online, highlighting its significant implications for online marketing strategies.
This study investigates the influence of perceived value and perceived risk on consumer intentions to purchase counterfeit luxury goods, drawing upon an integrated theoretical framework encompassing perceived value theory, risk perception theory, and consumer behavior models. Through a quantitative research design involving a structured survey and Structural Equation Modeling (SEM), the study examines the relationships among perceived value dimensions (functional, emotional, social, economic), perceived risk factors (financial, social, performance), consumer attitudes, and purchase intentions. The findings reveal that perceived value positively influences purchase intentions, with consumer attitudes acting as a critical mediating mechanism. Conversely, perceived risk negatively impacts purchase intentions, with this relationship also mediated by consumer attitudes. Furthermore, Bayesian Network analysis uncovers the indirect pathways through which perceived risk shapes purchase intentions via its influence on consumer attitudes. By integrating these theoretical frameworks and employing advanced analytical techniques, this study contributes to a comprehensive understanding of the complex decision-making processes underlying counterfeit luxury goods consumption. The findings provide valuable insights for policymakers, luxury brand managers, and consumer protection agencies in devising targeted strategies to address consumer perceptions of value and risk, ultimately mitigating the proliferation of counterfeit luxury goods.
The lack of attention from mining companies to the majority of areas still affected by mining activities can result in regional economic disparities and high levels of social violence. It is crucial to have policy strategies for mining contributions to rural development equity and social violence reduction through CSR assistance and other aid funds. This research employs the Multi-Criteria Decision Analysis method using the MULTIPOL analysis tool. Recommended action programs include the construction of schools, provision of scholarships, job openings, business capital, and infrastructure development, supported by strong regulations and law enforcement. Cracking down on illegal mining permits is essential to reduce environmental damage. Holistic and sustainable integration policies, alongside effective law enforcement, are necessary to achieve the goals of equitable development and social violence reduction. These steps should be reinforced with incentives for traditional/community leaders and increased police/military presence in villages within the next 2 years, particularly in zones 2 and 3 of the mining areas. Failure to implement these measures could escalate social violence, jeopardize security, and impede the operations of mining companies in Kolaka. The findings of this research support the priority of security and orderliness in development and underscore the importance of diverse research methods for mining area development policies.
Amidst an upsurge in the quantity of delinquent loans, the financial industry is experiencing a fundamental transformation in the approaches utilised for debt recovery. The debt collection process is presently undergoing automation and improvement through the utilisation of Artificial Intelligence (AI), an emergent technology that holds the potential to revolutionise this sector. By leveraging machine learning, natural language processing, and predictive analytics, automated debt recovery systems analyse vast quantities of data, generate forecasts regarding the likelihood of recovery, and streamline operational processes. Debt collection systems powered by AI are anticipated to be compliant, precise, and effective. On the other hand, conventional approaches are linked to increasing expenditures and inefficiencies in operations. These solutions facilitate efficient resource allocation, customised communication, and rapid data analysis, all while minimising the need for human intervention. Significant progress has been made in data analytics, predictive modelling, and decision-making through the application of artificial intelligence (AI) in debt recovery; this has the potential to revolutionize the financial sector’s approach to debt management. The findings of the research underscore the criticality of artificial intelligence (AI) in attaining efficacy and precision, in addition to the imperative of a data-centric framework to fundamentally reshape approaches to debt collection. In conclusion, artificial intelligence possesses the capacity to profoundly transform the existing approaches utilized in debt management, thereby guaranteeing financial institutions’ sustained profitability and efficacy. The application of machine learning methodologies, including predictive modelling and logistic regression, signifies the potential of the system.
Copyright © by EnPress Publisher. All rights reserved.