The work is devoted to the numerical solution of the initial boundary value problem for the heat equation with a fractional Riesz derivative. Explicit and implicit difference schemes are constructed that approximate the boundary value problem for the heat equation with a fractional Riesz derivative with respect to the coordinate. In the case of an explicit difference scheme, a condition is obtained for the time step at which the difference scheme converges. For an implicit difference scheme, a theorem on unconditional convergence is proved. An example of a numerical calculation using an implicit difference scheme is given. It has been established that when passing to a fractional derivative, the process of heat propagation slows down.
This research paper explores the influence of first-order chemical reactions on the sustainable properties of electrically conducting magnetohydrodynamic (MHD) fluids in a vertical channel with the unique characteristics of Jeffrey fluid flow. The mathematical model of MHD flow with Jeffrey fluid and chemical reaction incorporates the impacts of viscous dissipation, Joule heating, and a non-Newtonian fluid model with viscoelastic properties in the flow regions. The governing equations of the flow field were solved using the finite difference method, and the impacts of flow parameters on the flow characteristics were discussed numerically using a graphical representation. It’s revealed that increasing the Jeffrey parameter results in a decline in the velocity field profiles. Also, species concentration field profiles decline with higher values of the destruction chemical reaction parameter. The findings of this study have significant implications for various engineering applications, including energy generation, aerospace engineering, and material processing. Additionally, the inclusion of Jeffrey’s fluid flow introduces a viscoelastic component, enhancing the complexity of the fluid dynamics.
Publications overestimating the medical and ecological sequels of a slight anthropogenic increase in the radiation background have been reviewed recently with examples of different organs and pathological conditions. The overestimation contributed to the strangulation of atomic energy. The use of nuclear energy for electricity production is on the agenda today due to the increasing energy needs of humankind. Apparently, certain scientific writers acted in the interests of fossil fuel producers. Health risks and environmental damage are maximal for coal and oil, lower for natural gas, and much lower for atomic energy. This letter is an addition to previously published materials, this time focused on studies of cataracts in radiation-exposed populations in Russia. Selection and self-selection bias are of particular significance. Apparently, the self-reporting rate correlates with dose estimates and/or with professional awareness about radiation-related risks among nuclear workers or radiologic technologists, the latter being associated with their work experience/duration and hence with the accumulated dose. Individuals informed of their higher doses would more often seek medical advice and receive more attention from medics. As a result, lens opacities are diagnosed in exposed people earlier than in the general population. This explains dose-effect correlations proven for the incidence of cataracts but not for the frequency of cataract surgeries. Along the same lines, various pathological conditions are more often detected in exposed people. Ideological bias and the trimming of statistics have not been unusual in the Russian medical sciences. It is known that ionizing radiation causes cataracts; however, threshold levels associated with risks are understudied. In particular, thresholds for chronic and fractionated exposures are uncertain and may be underestimated.
Water pollution has become a serious threat to our ecosystem. Water contamination due to human, commercial, and industrial activities has negatively affected the whole world. Owing to the global demanding challenges of water pollution treatments and achieving sustainability, membrane technology has gained increasing research attention. Although numerous membrane materials have focused, the sustainable water purification membranes are most effective for environmental needs. In this regard sustainable, green, and recyclable polymeric and nanocomposite membranes have been developed. Materials fulfilling sustainable environmental demands usually include wide-ranging polyesters, polyamides, polysulfones, and recyclable/biodegradable petroleum polymers plus non-toxic solvents. Consequently, water purification membranes for nanofiltration, microfiltration, reverse osmosis, ultrafiltration, and related filtration processes have been designed. Sustainable polymer membranes for water purification have been manufactured using facile techniques. The resulting membranes have been tested for desalination, dye removal, ion separation, and antibacterial processes for wastewater. Environmental sustainability studies have also pointed towards desired life cycle assessment results for these water purification membranes. Recycling of water treatment membranes have been performed by three major processes mechanical recycling, chemical recycling, or thermal recycling. Moreover, use of sustainable membranes has caused positive environmental impacts for safe waste water treatment. Importantly, worth of sustainable water purification membranes has been analyzed for the environmentally friendly water purification applications. There is vast scope of developing and investigating water purification membranes using countless sustainable polymers, materials, and nanomaterials. Hence, value of sustainable membranes has been analyzed to meet the global demands and challenges to attain future clean water and ecosystem.
China’s annual government work report (GWR) contains terms with Chinese characteristics (TCC), reflecting unique policy frameworks. Translating these terms into English poses significant challenges due to cultural disparities between China and the West. This paper examines the English translation methods used for such terms, using the 2020 GWR as a case study, aiming to provide valuable insights for future translation practices.
Copyright © by EnPress Publisher. All rights reserved.