In this paper, an improved mathematical model for flashover behavior of polluted insulators is proposed based on experimental tests. In order to determine the flashover model of polluted insulators, the relationship between conductivity and salinity of solution pollution layer of the insulator is measured. Then, the leakage of current amplitude of four common insulators versus axial, thermal conductivity and arc constants temperature was determined. The experimental tests show that top leakage distance (TLd) to bottom leakage distance (BLd) ratio of insulators has a significant effect on critical voltage and current. Therefore, critical voltage and current were modeled by TLd to BLd ratio Index (M). Also, salinity of solution pollution layer of the insulators has been applied to this model by resistance pollution parameter. On the other hand, arc constants of each insulator in new model have been identified based on experimental results. Finally, a mathematical model is intended for critical voltage against salinity of solution pollution layer of different insulators. This model depends on insulator profile. There is a good agreement between the experimental tests of pollution insulators obtained in the laboratory and values calculated from the mathematical models developed in the present study.
One functional class is described in terms of one-sided modulus of continuity and the modulus of positive (negative) variation on which there
is a uniform convergence of the truncated cardinal Whittaker functions.
The article aims at developing an efficient and stable catalysts for simultaneous hydrogenation of o-chloronitrobenzene to o-chloroaniline and 1,4-butanediol dehydrogenation to γ-butyrolactone. A series of CoO-Cu-MgO catalysts, composed of 10 wt% of copper, various amount of cobalt loadings (1, 5 and 10 wt%) and remaining of MgO were developed by co-precipitation followed by thermal treatment. o-Chloroaniline and γ-butyrolactone were the main products with high yield of 85% and 90%, respectively. The advantage of the coupling process is that the hydrogenation reaction was conducted without external hydrogen, demonstrating minimize the hydrogen consumption known as hydrogen economy route. From N2O characterization results, the high activity of 5CoO-10Cu-MgO was found that it has high amount of Cu species (Cu0/Cu+1) which govern the stable activity and selectivity on time on stream study in presence of cobalt in Cu-MgO.
Afforestation is a main tool for preventing desertification and soil erosion in arid and semiarid regions of Iran. Large-scale afforestation, however, has poorly understood consequences for the future ecosystems in the term of ecosystems protection. The objective of the present study is to identify changes in soil properties following different intervals of planting of Ailanthus altissima (tree of heaven) in semiarid afforestation of Iran (Chitgar Forest Park, Tehran). For this purpose, sand, silt and clay ratios, bulk density, soil moisture, pH, electrical conductivity, phosphorus, potassium, magnesium, calcium, sodium, total soil N, and total carbon was measured. Our study highlighted the potential of the invasive trees by A. altissima, to alter soil properties along chronosequence. Almost all soil quality attributes showed a declining trend with stand age. A continuous decline in soil quality indicated that the present land management may not be sustainable. Therefore, an improved management practice is imperative to sustain soil quality and maintain long-term productivity of plantation forests. Thinning activity will be required to reduce the number of trees competing for the same nutrients especially in a older stand to protect forest soils.
Research into electro-conductive textiles based on conductive polymers like polypyrrole has increased in recent years due to their high potential applications in various fields. Conductive polymers behave like insulators in their neutral states, with typical electrical conductivity in the range 10–10 to 10–25 Scm–1. These neutral polymers can be converted into semi-conductive or conductive states with conductivities ranging from 1 Scm–1 to 10–4 Scm–1 through chemical or electro-chemical redox reactions. By applying these polymers to a textile surface, we can obtain novel composites that are strong, flexible, lightweight, and highly electroconductive. These textile composites are suitable for applications such as heating pads, sensors, corrosion-protecting materials, actuators, electrochromic devices, EMI shielding, etc. The methods of application of conductive polymers onto the textile surface, such as in-situ chemical, in-situ electrochemical, in-situ vapor phase, in-situ polymerization in a supercritical fluid, and solution coating processes, are described here briefly. The merits and demerits of these methods are mentioned here. The reaction mechanisms of chemical and electrochemical polymerization proposed by the different researchers are described. Different factors affecting the kinetics of chemical and electrochemical polymerization are accounted for. The influence of textile materials on the kinetics of chemical polymerization is reviewed and reported.
This paper is concerned with the numerical solution of the mixed Volterra-Fredholm integral equations by using a version of the block by block method. This method efficient for linear and nonlinear equations and it avoids the need for spacial starting values. The convergence is proved and finally performance of the method is illustrated by means of some significative examples.
Copyright © by EnPress Publisher. All rights reserved.